

# Technical Report No.: 64.181.24.00325.01 Rev.00 Date: 2024-03-27

| Client:             | Name:                     | Proteam Europa AS                                                                                           |
|---------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|
|                     | Address:                  | Kokstaddalen 31, 5257 Kokstad, NORWAY                                                                       |
|                     | Contact person:           | Harald Einevoll                                                                                             |
| Manufacturer:       | Name:                     | Proteam Europa AS                                                                                           |
|                     | Address:                  | Kokstaddalen 31, 5257 Kokstad, NORWAY                                                                       |
| Factory:            | Name:                     | FOSHAN GUANGTENG NEW ENERGY CO., LTD                                                                        |
|                     | Address:                  | Section 2,Yongfeng Industrial Zone Lunjiao, Shunde, 528308<br>Foshan, Guangdong, People's Republic of China |
| Test object:        | Product:                  | DC INVERTER HEAT PUMP                                                                                       |
|                     | Model:                    | Pro25i, Pro30i                                                                                              |
|                     | Trade mark:               |                                                                                                             |
| Test specification: | ✓                         | EN 14825:2022                                                                                               |
| ·                   | <b>v</b>                  | EN 14511-3:2022                                                                                             |
|                     |                           | EN 14511-4:2022 Clause 4                                                                                    |
|                     |                           | EN 12102-1:2022                                                                                             |
| Purpose of          | Test according to the     | test specification                                                                                          |
| examination:        | _                         |                                                                                                             |
|                     |                           | (EU) No 813/2013                                                                                            |
|                     |                           | EU 2016/2282:2016-11-30                                                                                     |
| Test result:        |                           | that the presented product is in compliance with the above                                                  |
|                     | listed test specification | IJ.                                                                                                         |

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question. It does not imply a general statement regarding the quality of products from regular production. For further details please see testing and certification regulation, chapter A-3.4.

www.tuvsud.com





### 1 Description of the test object

### 1.1 Function

Manufacturer's specification for intended use: The appliance is air to water heat pump. Manufacturer's specification for predictive use: According to user manual

### 1.2 Consideration of the foreseeable use

- Not applicable
- $\ensuremath{\boxdot}$  Covered through the applied standard
- $\hfill \Box$  Covered by the following comment
- $\Box$  Covered by attached risk analysis

### 1.3 Technical Data

| lecinical Data                |                                                       |
|-------------------------------|-------------------------------------------------------|
| Model :                       | Pro25i, Pro30i                                        |
| Rated Voltage (V) :           | 380-415V, 3N~                                         |
| Rated Frequency (Hz) :        | 50                                                    |
| Rated Power (W) :             | 5680W for Pro25i, 8500W for Pro30i                    |
| Rated Current (A) :           | 9.5A for Pro25i, 14.0A for Pro30i                     |
| Protection Class :            | Class I                                               |
| Protection Against Moisture : | IP X4                                                 |
| Construction :                | Stationary                                            |
| Supply connection :           | Non detachable cord                                   |
|                               | Permanent connection to fixed wiring                  |
| Operation mode:               | <ul> <li>Continuous operation;</li> </ul>             |
|                               | Intermittent operation;                               |
|                               | □ Short time operation;                               |
| Refrigerant/charge (kg) :     | R290 / 1.30kg for Pro25i,<br>1.60kg for Pro30i        |
| Declared parameters :         | 🗹 Average 🗌 Warmer 🗌 Colder                           |
| Sound power level dB(A) :     | N/A                                                   |
| Series No :                   | KSN0140Q00201 for Pro25i,<br>KSN0150Q02476 for Pro30i |
|                               |                                                       |



Π"Ν



### 2 Order

### 2.1 Date of Purchase Order, Customer's Reference

Date of Purchase Order: 2022-08-15, 2023-06-21, 2024-01-19

Customer's Reference: Proteam Europa AS

### 2.2 Test Sample(s)

- Reception date(s): 2022-12-30, 2023-07-07
- Location(s) of reception:

For Energy test:

Guangzhou Customs District Technology Center (CNAS accredited laboratory with Registration No.CNAS L2322)

Address: No.3, Desheng East Road, Daliang, Shunde District, Foshan, Guangdong, China

For Noise tests:

China Quality Certification Centre South China Laboratory (CNAS accredited laboratory with Registration No.CNAS L4903)

Address: No.11, South of Shenghui Road, Nantou, Zhongshan, Guangdong, China

• Condition of test sample(s): completed and can be normal operation

### 2.3 Date(s) of Testing

2022-12-30 to 2023-01-18, 2023-07-07 to 2023-09-10

### 2.4 Location(s) of Testing

Same as 2.2

# 2.5 Points of Non-compliance or Exceptions of the Test Procedure N/A

### 3 Test Results

☑ Decision rule according to ILAC-G8:09/2019 clause 4.2.1 Binary statement for simple acceptance rule or IEC Guide 115:2023, clause 4.3 Simple acceptance was applied.

□ Decision rule according to customer's requirements was applied. It is:

 $\Box$  Decision rule according to ILAC-G8:09/2019 clause 4.2.2 Binary statement with guard band - guard band length = 95 % extended measurement uncertainty, was applied.

 $\Box$  Decision rule (based on ILAC-G8:09/2019 clause 4.2.3 Non-binary statement with guard band, guard band length = 95 % extended measurement uncertainty) for an upper specification limit (A lower limit or specification with an up-per and a lower limit is treated similarly.):

•Compliance with the requirement: If a specification limit is not breached by a measurement result plus the expanded uncertainty with a 95% coverage probability, then compliance with the specification will be stated (e. g. Pass).

•Non-compliance with the requirement: If a specification limit is exceeded by the measurement result minus the expanded uncertainty with a 95% coverage probability, then non-compliance with the specification will be stated (e. g. Fail).

•Inconclusive result: If a measurement result plus/minus the expanded uncertainty with a 95 % coverage probability overlaps the limit it will be stated that it is not possible to state compliance or non-compliance.

□ There are no statements to conformity or no results with measurand stated in this report, no decision rule has been applied.

www.tuvsud.com



### 3.1 **Positive Test Results**

See Appendix I

### Remarks 4

### 4.1 General

The user manual has been examined according to the minimum requirements described in the product standard. The manufacturer is responsible for the accuracy of further par-ticulars as well as of the composition and layout.

When the product is placed on the market, it must be accompanied with safety Instruc-tions 4.2 written in official language of the country. The instructions shall give information re-garding safe operation, installation and maintenance.

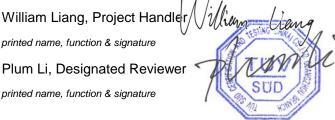
### 5 Documentation

- Appendix I: Test results
- Appendix II: Marking plate
- Appendix III: photo documentation
- Appendix IV: Construction data form
- Appendix V: Test equipment list
- 6 **Test History**
- 1) These appliances are Air To Water Heat Pump Unit, each one including a whole compression type refrigerant circuit to heat water in another circuit. These appliances were for cooling and heating water function, this report only for heating capacity test.
- 2) The main power is supplied by a 5-pole supply cord connecting to fixed wiring.
- 3) Water enthalpy method was adopted in this report.
- 4) Standby mode power, off mode power and thermostat-off mode power were tested according to clause 12 of standard EN 14825:2022.
- This test report 64.181.24.00325.01 Rev.00, dated 2024-03-27 bases on original test report 5) 64.181.22.03425.02 Rev.00, dated 2023-09-21 to include the following changes and/or additions, which were considered technical modifications:

a) Changing report holder name and address, manufacturer name and address, trademark and model name.

b) After evaluating, no additional test was needed.

# TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch **TÜV SÜD Group**


Tested by:

printed name, function & signature

Approved by:

printed name, function & signature

Plum Li, Designated Reviewer



Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 4 of 31







|                                                                                                                                                                                                           | Heating mode (Low temperature application):                         |                                                                                         |                                                         |                                                  |                                     |                     |                                  |                                                                                                               | Р                                              |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------|---------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|
| Model                                                                                                                                                                                                     | Pro25i                                                              |                                                                                         |                                                         |                                                  |                                     |                     |                                  |                                                                                                               |                                                |                                                    |
| Product<br>type                                                                                                                                                                                           | Air to Water                                                        |                                                                                         | Warn                                                    | ner                                              |                                     | Colder              |                                  |                                                                                                               |                                                |                                                    |
| 1. Test condit                                                                                                                                                                                            | ions:                                                               |                                                                                         |                                                         |                                                  |                                     |                     |                                  |                                                                                                               |                                                |                                                    |
| Condition                                                                                                                                                                                                 | F                                                                   | Part Load Ra<br>in %                                                                    | itio                                                    |                                                  | hea                                 | Outdo<br>at exch    |                                  | er                                                                                                            |                                                | or heat<br>nanger                                  |
| Condition                                                                                                                                                                                                 | Form                                                                | iula                                                                                    |                                                         | erage<br>nates                                   |                                     | : dry (w<br>nperatu |                                  |                                                                                                               |                                                | itlet water<br>atures (°C)                         |
| А                                                                                                                                                                                                         | (-7-16)/(Tde                                                        | esignh-16)                                                                              | 8                                                       | 38                                               |                                     | -7(-8               | 3)                               |                                                                                                               | а                                              | / 34                                               |
| В                                                                                                                                                                                                         | (+2-16)/ (Td                                                        | esignh-16)                                                                              | Ę                                                       | 54                                               |                                     | 2(1)                | )                                |                                                                                                               | а                                              | / 30                                               |
| С                                                                                                                                                                                                         | (+7-16)/(Tde                                                        | esignh-16)                                                                              | 3                                                       | 35                                               |                                     | 7(6)                | )                                |                                                                                                               | а                                              | / 27                                               |
| D                                                                                                                                                                                                         | (+12-16)/(Td                                                        | esignh-16)                                                                              | 1                                                       | 15                                               |                                     | 12(11               | 1)                               |                                                                                                               | а                                              | / 24                                               |
| E                                                                                                                                                                                                         | (TOL                                                                | -16)/ (Tdesig                                                                           | gnh-16)                                                 |                                                  |                                     | TOL                 | -                                |                                                                                                               | a/                                             | 35.3                                               |
| F                                                                                                                                                                                                         | (Tbival                                                             | ent-16)/(Tdes                                                                           | signh-16                                                | 6)                                               |                                     | Tbiv                | /                                |                                                                                                               | а                                              | / 34                                               |
| G                                                                                                                                                                                                         | (-15-16)/(Td                                                        | esignh-16)                                                                              | N                                                       | I/A                                              |                                     | -15                 |                                  |                                                                                                               | N/A                                            |                                                    |
| conditions, the c                                                                                                                                                                                         | capacity is 11.8                                                    | 14kW, the po                                                                            | ower is :                                               |                                                  |                                     | P is 4.1            |                                  | •                                                                                                             |                                                |                                                    |
| Remark: a) With<br>conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load                                                                                                  | capacity is 11.8                                                    | 14kW, the po                                                                            | ower is :<br>ge):<br>A2/                                |                                                  |                                     | 27                  |                                  | /kW.<br>W24                                                                                                   | A(-10)/<br>W35.3<br>(100%)                     | A(-7)/ W34<br>(88%)                                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                         | capacity is 11.8                                                    | 14kW, the po<br>data(Averag<br>A(-7)/W34                                                | ower is 5<br><b>ge):</b><br>A2/<br>(54                  | 2.832kW<br>W30                                   | , the COI                           | 27                  | 7kW/<br>A12/                     | /kW.<br>W24<br>%)                                                                                             | W35.3                                          | A(-7)/ W34                                         |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                         | capacity is 11.8                                                    | 14kW, the po<br>data(Averaç<br>A(-7)/W34<br>(88%)                                       | ower is .<br><b>ge):</b><br>A2/<br>(54                  | 2.832kW<br>W30<br>4%)                            | , the COI<br>A7/W2<br>(35%          | 27                  | 7kW/<br>A12/<br>(15              | /kW.<br>W24<br>%)                                                                                             | W35.3<br>(100%)                                | A(-7)/ W34<br>(88%)                                |
| conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection                                                                                                  | capacity is 11.8                                                    | 14kW, the po<br>data(Averag<br>A(-7)/W34<br>(88%)<br>A                                  | ower is .<br>ge):<br>A2/<br>(54                         | 2.832kW<br>W30<br>4%)<br>B                       | , the COI<br>A7/W2<br>(35%<br>C     | 27                  | 7kW/<br>A12/<br>(15              | w24<br>%)<br>)<br>):00                                                                                        | W35.3<br>(100%)<br>E                           | A(-7)/ W34<br>(88%)<br>F                           |
| conditions, the of<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump                                                                      | capacity is 11.8<br>/correction c<br>Unit<br><br>hh: min:sec        | 14kW, the po<br><b>Jata(Averag</b><br>A(-7)/W34<br>(88%)<br>A<br>1:10:00                | ower is .<br>ge):<br>A2/<br>(54                         | 2.832kW<br>W30<br>4%)<br>B<br>0:00               | A7/W2<br>(35%)<br>C<br>1:10:0       | 27                  | 7kW/<br>A12/<br>(15<br>[<br>1:10 | w24<br>%)<br>)<br>):00                                                                                        | W35.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W34<br>(88%)<br>F<br>1:10:00                |
| conditions, the of<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts                                                          | capacity is 11.8<br>/correction c<br>Unit<br><br>hh: min:sec        | 14kW, the po<br><b>Jata(Averag</b><br>A(-7)/W34<br>(88%)<br>A<br>1:10:00                | ower is .<br><b>ge):</b><br>A2/<br>(54)<br>1:1          | 2.832kW<br>W30<br>4%)<br>B<br>0:00               | A7/W2<br>(35%)<br>C<br>1:10:0       | 27<br>)<br>00       | 7kW/<br>A12/<br>(15<br>[<br>1:10 | W24<br>%)<br>)<br>):00                                                                                        | W35.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W34<br>(88%)<br>F<br>1:10:00                |
| conditions, the of<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br><b>Electrical Prop</b><br>Voltage<br>Current input of | <pre>capacity is 11.8 /correction c Unit hh: min:sec erties V</pre> | 14kW, the po<br><b>Jata(Averag</b><br>A(-7)/W34<br>(88%)<br>A<br>1:10:00<br>No          | ower is .<br>ge):<br>A2/<br>(54<br>1:1                  | 2.832kW<br>W30<br>4%)<br>B<br>0:00<br>No         | A7/W2<br>(35%)<br>C<br>1:10:0       | 27 ) 10 7           | A12/<br>(15<br>[<br>1:10<br>N    | /kW.<br>//24<br>%)<br>0<br>0:00<br>0<br>3.7                                                                   | W35.3<br>(100%)<br>E<br>1:10:00<br>No          | A(-7)/ W34<br>(88%)<br>F<br>1:10:00<br>No          |
| conditions, the of<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br><b>Electrical Prop</b><br>Voltage                     | Apacity is 11.8                                                     | 14kW, the po<br><b>Jata(Averag</b><br>A(-7)/W34<br>(88%)<br>A<br>1:10:00<br>No<br>398.6 | ower is .<br>ge):<br>A2/<br>(5-<br>1:1<br>N<br>39<br>2. | 2.832kW<br>W30<br>4%)<br>B<br>0:00<br>No<br>98.8 | A7/W2<br>(35%)<br>C<br>1:10:0<br>No | 27 ) 10 7           | A12/<br>(15<br>1:10<br>N<br>398  | /kW.<br>///24<br>%)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | W35.3<br>(100%)<br>E<br>1:10:00<br>No<br>398.5 | A(-7)/ W34<br>(88%)<br>F<br>1:10:00<br>No<br>398.6 |

www.tuvsud.com





|                                        |              | 1      |        | 1       |         |        | 1      |
|----------------------------------------|--------------|--------|--------|---------|---------|--------|--------|
| Water flow                             | m³/h         | 2.00   | 2.00   | 2.00    | 2.00    | 2.00   | 2.00   |
| <b>Inlet</b> Water<br>temperature      | °C           | 29.53  | 27.34  | 25.28** | 23.33** | 30.95  | 29.53  |
| <b>Outlet</b> Water<br>temperature     | °C           | 34.00  | 30.05  | 28.13** | 26.57** | 35.25  | 34.00  |
| Test conditions                        | s Source Sid | le     |        |         |         |        |        |
| Barometric<br>pressure                 | kPa          | 101.02 | 101.01 | 101.01  | 101.02  | 101.01 | 101.02 |
| Air <b>inlet</b><br>temperature,<br>DB | °C           | -6.94  | 2.07   | 7.00    | 11.99   | -9.99  | -6.94  |
| Air <b>inlet</b><br>temperature,<br>WB | °C           | -7.84  | 0.96   | 6.01    | 10.95   | -11.02 | -7.84  |
| Summary of the                         | e results    |        |        |         |         |        |        |
| Total heating capacity                 | kW           | 10.444 | 6.368  | 6.688   | 7.609   | 9.997  | 10.444 |
| Effective power<br>input               | kW           | 3.322  | 1.359  | 1.096   | 1.035   | 3.494  | 3.322  |
| Coefficient of<br>performance<br>(COP) | kW/kW        | 3.14   | 4.69   | 6.10    | 7.35    | 2.86   | 3.14   |

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

| Electric power consumptions            | Unit | Value |
|----------------------------------------|------|-------|
| Thermostat-off mode [P <sub>TO</sub> ] | kW   | 0.029 |
| Standby mode [P <sub>SB</sub> ]        | kW   | 0.010 |
| Crankcase heater [P <sub>CK</sub> ]    | kW   | 0.040 |
| Off mode [P <sub>OFF</sub> ]           | kW   | 0.010 |

www.tuvsud.com





| Tdesignh(°C):  | -10           |                   | Tbiv(°C) :      | -7   |      |                     |
|----------------|---------------|-------------------|-----------------|------|------|---------------------|
| Pdesignh(kW):  | : 11.806      |                   | TOL(°C) :       | -10  |      |                     |
| Test result A, | B, C, D, E, F | conditions        | :               |      |      |                     |
| Condition      | Part load     | Measured capacity | Measured<br>COP | Cdh  | CR   | COP<br>at part load |
| E              | 11.806        | 9.997             | 2.86            | 0.90 | 1.00 | 2.86                |
| F              | 10.444        | 10.444            | 3.14            | 0.90 | 1.00 | 3.14                |
| А              | 10.444        | 10.444            | 3.14            | 0.90 | 1.00 | 3.14                |
| В              | 6.357         | 6.368             | 4.69            | 0.90 | 1.00 | 4.69                |
| С              | 4.087         | 6.688             | 6.10            | 0.90 | 0.61 | 5.74                |
| D              | 1.816         | 7.609             | 7.35            | 0.90 | 0.24 | 5.57                |

| Conclusions:                                                                                 | Unit     | Value |
|----------------------------------------------------------------------------------------------|----------|-------|
| SCOPon:                                                                                      | kWh/kWh  | 4.63  |
| SCOP:                                                                                        | kWh/kWh  | 4.62  |
| Q <sub>H</sub> :                                                                             | kWh/year | 24392 |
| Q <sub>HE</sub> :                                                                            | kWh/year | 5278  |
| $\eta_{s,h}$                                                                                 | %        | 181.9 |
| Seasonal space heating energy<br>efficiency classes: (According (EU)<br>No 811/2013 Table 2) |          | A+++  |

www.tuvsud.com





|                                                                                                                                                                                                          | neating mou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e (Medium t                                                                          | emperati                                                   | ure app                                       | lication)                                                 | :                                                                |                                               |                    |                                                           | Р                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|--------------------|-----------------------------------------------------------|----------------------------------------------------|
| Model                                                                                                                                                                                                    | Pro25i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |                                                            |                                               |                                                           |                                                                  |                                               |                    |                                                           |                                                    |
| Product<br>type                                                                                                                                                                                          | Air to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /erage                                                                               |                                                            | Warme                                         | er [                                                      |                                                                  | Colder                                        |                    |                                                           |                                                    |
| 1. Test condit                                                                                                                                                                                           | ions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                                                            |                                               |                                                           |                                                                  |                                               |                    |                                                           |                                                    |
|                                                                                                                                                                                                          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Part Load Ra<br>in %                                                                 | tio                                                        |                                               | he                                                        | Outdoo<br>at excha                                               |                                               |                    |                                                           | or heat<br>anger                                   |
| Condition                                                                                                                                                                                                | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | Avera<br>clima                                             | -                                             | Inlet                                                     | dry (we                                                          | t) bulb                                       |                    | Inlet/ou                                                  | tlet water<br>tures (°C)                           |
| А                                                                                                                                                                                                        | (-7-16)/(Tde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esignh-16)                                                                           | 88                                                         | 3                                             |                                                           | -7(-8)                                                           |                                               |                    | a                                                         | / 52                                               |
| В                                                                                                                                                                                                        | (+2-16)/ (Td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esignh-16)                                                                           | 54                                                         | ļ                                             |                                                           | 2(1)                                                             |                                               |                    | а                                                         | / 42                                               |
| С                                                                                                                                                                                                        | (+7-16)/(Tde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esignh-16)                                                                           | 35                                                         | 5                                             |                                                           | 7(6)                                                             |                                               |                    | а                                                         | / 36                                               |
| D                                                                                                                                                                                                        | (+12-16)/(Td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lesignh-16)                                                                          | 15                                                         | 5                                             |                                                           | 12(11)                                                           |                                               |                    | а                                                         | / 30                                               |
| Е                                                                                                                                                                                                        | (TOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -16)/ (Tdesig                                                                        | jnh-16)                                                    |                                               |                                                           | TOL                                                              |                                               |                    | a /                                                       | 55.3                                               |
| F                                                                                                                                                                                                        | (Tbival                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent-16)/(Tdes                                                                        | signh-16)                                                  |                                               |                                                           | Tbiv                                                             |                                               |                    | а                                                         | / 52                                               |
| G                                                                                                                                                                                                        | (-15-16)/(Td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esignh-16)                                                                           | N/                                                         | Ą                                             |                                                           | -15                                                              |                                               |                    | N/A                                                       |                                                    |
| conditions, the c                                                                                                                                                                                        | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50kW, the p                                                                          | ower is 3                                                  |                                               |                                                           |                                                                  |                                               |                    |                                                           |                                                    |
| Remark: a) With<br>conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load                                                                                                 | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50kW, the p                                                                          | ower is 3                                                  | .835kW<br>/42                                 |                                                           | P is 2.88                                                        |                                               | V.<br>30           | A(-10)/<br>W55.3<br>(100%)                                | A(-7)/ W52<br>(88%)                                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                        | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50kW, the po<br>data(Averag                                                          | ower is 3<br><b>ge):</b><br>A2/M                           | .835kW<br>/42<br>%)                           | , the COI                                                 | P is 2.88                                                        | kW/kV                                         | V.<br>30           | A(-10)/<br>W55.3                                          | A(-7)/ W52                                         |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                        | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)                                    | ower is 3<br><b>ge):</b><br>A2/W<br>(544                   | .835kW<br>/42<br>%)                           | , the COI<br>A7/W3<br>(35%                                | P is 2.88                                                        | 412/W3<br>(15%)                               | V.<br>30           | A(-10)/<br>W55.3<br>(100%)                                | A(-7)/ W52<br>(88%)                                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump                                                                             | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A                               | ower is 3<br><b>ge):</b><br>A2/W<br>(54 <sup>4</sup><br>B  | .835kW<br>/42<br>%)<br>:00                    | , the COI<br>A7/W3<br>(35%<br>C                           | P is 2.88                                                        | A12/W3<br>(15%)<br>D                          | V.<br>30           | A(-10)/<br>W55.3<br>(100%)<br>E                           | A(-7)/ W52<br>(88%)<br>F                           |
| conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts                                                          | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>(-7)/W52<br>(88%)<br>A<br>1:10:00                                               | ower is 3<br><b>ge):</b><br>(54<br>B<br>1:10               | .835kW<br>/42<br>%)<br>:00                    | , the COI<br>A7/W3<br>(35%<br>C<br>1:10:0                 | P is 2.88                                                        | A12/W3<br>(15%)<br>D<br>1:10:0                | V.<br>30           | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W52<br>(88%)<br>F<br>1:10:00                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br>Electrical Prop                                              | capacity is 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>(-7)/W52<br>(88%)<br>A<br>1:10:00                                               | ower is 3<br><b>ge):</b><br>(54<br>B<br>1:10               | .835kW<br>/42<br>%)<br>:00                    | , the COI<br>A7/W3<br>(35%<br>C<br>1:10:0                 | <ul> <li>is 2.88</li> <li>36 A</li> <li>)</li> <li>00</li> </ul> | A12/W3<br>(15%)<br>D<br>1:10:0                | V.<br>30<br>)<br>0 | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W52<br>(88%)<br>F<br>1:10:00                |
| conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br><b>Electrical Prop</b><br>Voltage<br>Current input of | correction of variable of the second | 50kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00<br>No              | ower is 3<br><b>ge):</b><br>(54<br>B<br>1:10               | .835kW<br>/42<br>%)<br>:00                    | , the COI<br>A7/W3<br>(35%)<br>C<br>1:10:0<br>No          | is 2.88 36 A ) 00 7                                              | A12/W3<br>(15%)<br>D<br>1:10:0<br>No          | V.<br>30<br>)<br>0 | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00<br>No          | A(-7)/ W52<br>(88%)<br>F<br>1:10:00<br>No          |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection                                                                                                        | correction of variable of the second | 250kW, the post<br>2ata(Average<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00<br>No<br>398.4 | ower is 3<br>ge):<br>A2/M<br>(54<br>B<br>1:10<br>No<br>398 | .835kW<br>/42<br>%)<br>:00<br>:00<br>:.8<br>7 | , the COI<br>A7/W3<br>(35%)<br>C<br>1:10:0<br>No<br>398.7 | is 2.88 36 A 00 7                                                | A12/W:<br>(15%)<br>D<br>1:10:0<br>No<br>398.7 | V.<br>30<br>0      | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00<br>No<br>398.4 | A(-7)/ W52<br>(88%)<br>F<br>1:10:00<br>No<br>398.4 |

www.tuvsud.com





| Test conditions                        | s User Side  |       |       |         |         |        |       |
|----------------------------------------|--------------|-------|-------|---------|---------|--------|-------|
| Water flow                             | m³/h         | 1.18  | 1.18  | 1.18    | 1.18    | 1.18   | 1.18  |
| <b>Inlet</b> Water<br>temperature      | °C           | 44.85 | 37.56 | 33.20** | 28.81** | 48.08  | 44.85 |
| <b>Outlet</b> Water<br>temperature     | °C           | 51.92 | 41.99 | 37.72** | 33.91** | 55.03* | 51.92 |
| Test conditions                        | s Source Sid | le    |       |         |         |        |       |
| Barometric<br>pressure                 | kPa          | 99.85 | 99.85 | 99.85   | 99.80   | 99.75  | 99.85 |
| Air <b>inlet</b><br>temperature,<br>DB | °C           | -7.03 | 2.09  | 7.01    | 12.00   | -9.89  | -7.03 |
| Air <b>inlet</b><br>temperature,<br>WB | °C           | -8.06 | 1.18  | 6.01    | 10.89   | -10.91 | -8.06 |
| Summary of the                         | e results    |       |       |         |         |        |       |
| Total heating capacity                 | kW           | 9.737 | 6.119 | 6.192   | 6.995   | 9.580  | 9.737 |
| Effective power<br>input               | kW           | 4.084 | 1.722 | 1.276   | 1.064   | 4.460  | 4.084 |
| Coefficient of<br>performance<br>(COP) | kW/kW        | 2.38  | 3.55  | 4.85    | 6.58    | 2.15   | 2.38  |

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

| Electric power consumptions         | Unit | Value |
|-------------------------------------|------|-------|
| Thermostat-off mode $[P_{TO}]$      | kW   | 0.029 |
| Standby mode [P <sub>SB</sub> ]     | kW   | 0.010 |
| Crankcase heater [P <sub>CK</sub> ] | kW   | 0.040 |
| Off mode [P <sub>OFF</sub> ]        | kW   | 0.010 |

www.tuvsud.com





| Tdesignh(°C):  | -10           |                   | Tbiv(°C) :      | -7   |      |                     |
|----------------|---------------|-------------------|-----------------|------|------|---------------------|
| Pdesignh(kW):  | 11.007        |                   | TOL(°C) :       | -10  |      |                     |
| Test result A, | B, C, D, E, F | conditions        | :               | 1    |      |                     |
| Condition      | Part load     | Measured capacity | Measured<br>COP | Cdh  | CR   | COP<br>at part load |
| E              | 11.007        | 9.580             | 2.15            | 0.90 | 1.00 | 2.15                |
| F              | 9.737         | 9.737             | 2.38            | 0.90 | 1.00 | 2.38                |
| А              | 9.737         | 9.737             | 2.38            | 0.90 | 1.00 | 2.38                |
| В              | 5.927         | 6.119             | 3.55            | 0.90 | 0.97 | 3.55                |
| С              | 3.810         | 6.192             | 4.85            | 0.90 | 0.62 | 4.57                |
| D              | 1.693         | 6.995             | 6.58            | 0.90 | 0.24 | 5.01                |

| Conclusions:                                                                                 | Unit     | Value |
|----------------------------------------------------------------------------------------------|----------|-------|
| SCOPon:                                                                                      | kWh/kWh  | 3.61  |
| SCOP:                                                                                        | kWh/kWh  | 3.60  |
| Q <sub>H</sub> :                                                                             | kWh/year | 22741 |
| Q <sub>HE</sub> :                                                                            | kWh/year | 6315  |
| $\eta_{s,h}$                                                                                 | %        | 141.1 |
| Seasonal space heating energy<br>efficiency classes: (According (EU)<br>No 811/2013 Table 1) |          | A++   |

www.tuvsud.com





|                                                                                                                                                                       | Heating mode (Low temperature application):            |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                     |                     |                                        |                               | Р                                              |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|---------------------|----------------------------------------|-------------------------------|------------------------------------------------|--------------------------------------|
| Model                                                                                                                                                                 | Pro30i                                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                     |                     |                                        |                               |                                                |                                      |
| Product<br>type                                                                                                                                                       | Air to Water Heating season Average D Warmer D         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                     |                     |                                        | Colder                        | Colder                                         |                                      |
| 1. Test condit                                                                                                                                                        | ions:                                                  |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                     |                     |                                        |                               |                                                |                                      |
| Condition                                                                                                                                                             | P                                                      | Part Load Ra<br>in %                                             | tio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | hea                                 | Outdo<br>at excl    |                                        | er                            |                                                | or heat<br>nanger                    |
| Condition                                                                                                                                                             | Form                                                   | iula                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | verage<br>imates                            |                                     | t dry (w<br>nperatu | ,                                      |                               |                                                | tlet water<br>itures (°C)            |
| А                                                                                                                                                                     | (-7-16)/(Tde                                           | esignh-16)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88                                          |                                     | -7(-8               | 8)                                     |                               | а                                              | / 34                                 |
| В                                                                                                                                                                     | (+2-16)/ (Td                                           | esignh-16)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54                                          |                                     | 2(1                 | )                                      |                               | а                                              | / 30                                 |
| С                                                                                                                                                                     | (+7-16)/(Tde                                           | esignh-16)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                          |                                     | 7(6                 | 5)                                     |                               | а                                              | / 27                                 |
| D                                                                                                                                                                     | (+12-16)/(Td                                           | esignh-16)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                          |                                     | 12(1                | 1)                                     |                               | а                                              | / 24                                 |
| Е                                                                                                                                                                     | (TOL                                                   | -16)/ (Tdesig                                                    | nh-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i)                                          |                                     | TO                  | L                                      |                               | a/                                             | 35.3                                 |
| F                                                                                                                                                                     | (Tbival                                                | ent-16)/(Tdes                                                    | signh-'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16)                                         |                                     | Tbi                 | v                                      |                               | а                                              | / 34                                 |
| G                                                                                                                                                                     | (-15-16)/(Td                                           | esignh-16)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                         |                                     | -15                 | 5                                      |                               | ١                                              | N/A                                  |
| conditions, the c                                                                                                                                                     |                                                        | •                                                                | ower is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s 3.752kW                                   | andard ra<br>, the COI              | P is 4.7            | 72kW/                                  | /kW.                          |                                                |                                      |
| <b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load                                                                                                      |                                                        | •                                                                | ower is<br><b>ge):</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s 3.752kW<br>2/W30<br>54%)                  |                                     | 27                  | 72kW/<br>A12/<br>(15                   | W24                           | A(-10)/<br>W35.3<br>(100%)                     | A(-7)/ W34<br>(88%)                  |
| 2.Tested data<br>General test<br>conditions/                                                                                                                          | /correction c                                          | <b>lata(Averag</b><br>A(-7)/W34                                  | ower is<br><b>ge):</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/W30                                       | , the COI                           | 27                  | A12/                                   | W24<br>%)                     | W35.3                                          |                                      |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection                                                                                          | /correction c                                          | data(Averag<br>A(-7)/W34<br>(88%)                                | ower is<br>ge):<br>A2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/W30<br>54%)                               | , the COI<br>A7/W2<br>(35%          | 27<br>)             | A12/<br>(15                            | W24<br>%)                     | W35.3<br>(100%)                                | (88%)                                |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load                                                                                                             | /correction c                                          | data(Averag<br>A(-7)/W34<br>(88%)<br>A                           | ower is<br>ge):<br>A2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/W30<br>54%)<br>B                          | , the COI<br>A7/W2<br>(35%<br>C     | 27<br>)             | A12/<br>(15                            | W24<br>%)<br>)<br>):00        | W35.3<br>(100%)<br>E                           | (88%)<br>F                           |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts                                                   | /correction c<br>Unit<br><br>hh: min:sec               | data(Averag<br>A(-7)/W34<br>(88%)<br>A<br>1:10:00                | ower is<br>ge):<br>A2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/W30<br>54%)<br>B<br>:10:00                | A7/W2<br>(35%)<br>C<br>1:10:0       | 27<br>)             | A12/<br>(15<br>[<br>1:10               | W24<br>%)<br>)<br>):00        | W35.3<br>(100%)<br>E<br>1:10:00                | (88%)<br>F<br>1:10:00                |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br>Electrical Prop                                | /correction c<br>Unit<br><br>hh: min:sec               | data(Averag<br>A(-7)/W34<br>(88%)<br>A<br>1:10:00                | ower is<br>ge):<br>A2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/W30<br>54%)<br>B<br>:10:00                | A7/W2<br>(35%)<br>C<br>1:10:0       | 27<br>)<br>00       | A12/<br>(15<br>[<br>1:10               | W24<br>%)<br>)<br>):00<br>0   | W35.3<br>(100%)<br>E<br>1:10:00                | (88%)<br>F<br>1:10:00                |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br>Electrical Prop<br>Voltage<br>Current input of | /correction c<br>Unit<br><br>hh: min:sec<br><br>erties | A(-7)/W34<br>(88%)<br>A<br>1:10:00<br>No                         | 2000 Sever is<br>300 Sever is<br>3 | 2/W30<br>54%)<br>B<br>:10:00<br>No          | A7/W2<br>(35%)<br>C<br>1:10:0       | 27 ) 00 0           | A12/<br>(15<br>[<br>1:10               | W24<br>%)<br>):00<br>0<br>3.0 | W35.3<br>(100%)<br>E<br>1:10:00<br>No          | (88%)<br>F<br>1:10:00<br>No          |
| 2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump                                                               | /correction c<br>Unit<br><br>hh: min:sec<br><br>erties | data(Averag<br>A(-7)/W34<br>(88%)<br>A<br>1:10:00<br>No<br>398.3 | ge):           A2           (1)           1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/W30<br>54%)<br>B<br>:10:00<br>No<br>398.2 | A7/W2<br>(35%)<br>C<br>1:10:0<br>No | 27 ) 00             | A12/<br>(15<br>1:10<br>N<br>398<br>2.: | W24<br>%)<br>):00<br>0<br>3.0 | W35.3<br>(100%)<br>E<br>1:10:00<br>No<br>398.3 | (88%)<br>F<br>1:10:00<br>No<br>398.3 |

www.tuvsud.com





| Test conditions                        | s User Side  |          |        |         |         |        |        |
|----------------------------------------|--------------|----------|--------|---------|---------|--------|--------|
| Water flow                             | m³/h         | 3.02     | 3.02   | 3.02    | 3.02    | 3.02   | 3.02   |
| <b>Inlet</b> Water<br>temperature      | °C           | 30.13    | 27.68  | 25.53** | 23.30** | 31.63  | 30.13  |
| <b>Outlet</b> Water<br>temperature     | °C           | 34.01    | 30.00  | 27.81** | 26.00** | 35.31  | 34.01  |
| Test conditions                        | s Source Sid | le       |        |         |         |        |        |
| Barometric<br>pressure                 | kPa          | 101.02   | 101.01 | 101.01  | 101.02  | 101.01 | 101.02 |
| Air <b>inlet</b><br>temperature,<br>DB | °C           | -7.00    | 2.00   | 7.01    | 12.00   | -10.00 | -7.00  |
| Air <b>inlet</b><br>temperature,<br>WB | °C           | -8.00    | 1.01   | 6.01    | 11.00   | -11.00 | -8.00  |
| Summary of th                          | e results    | <u> </u> |        |         |         |        |        |
| Total heating capacity                 | kW           | 13.449   | 8.189  | 8.078   | 9.523   | 12.993 | 13.449 |
| Effective power<br>input               | kW           | 4.535    | 1.775  | 1.411   | 1.211   | 5.166  | 4.535  |
| Coefficient of<br>performance<br>(COP) | kW/kW        | 2.97     | 4.61   | 5.73    | 7.87    | 2.51   | 2.97   |

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

| Electric power consumptions            | Unit | Value |
|----------------------------------------|------|-------|
| Thermostat-off mode [P <sub>TO</sub> ] | kW   | 0.029 |
| Standby mode [P <sub>SB</sub> ]        | kW   | 0.010 |
| Crankcase heater [P <sub>CK</sub> ]    | kW   | 0.040 |
| Off mode [P <sub>OFF</sub> ]           | kW   | 0.010 |

www.tuvsud.com





| Tdesignh(°C):  | -10           |                   | Tbiv(°C) :      | -7   |      |                     |
|----------------|---------------|-------------------|-----------------|------|------|---------------------|
| Pdesignh(kW):  | 15.204        |                   | TOL(°C) :       | -10  |      |                     |
| Test result A, | B, C, D, E, F | conditions        | 5:              |      |      |                     |
| Condition      | Part load     | Measured capacity | Measured<br>COP | Cdh  | CR   | COP<br>at part load |
| E              | 15.204        | 12.993            | 2.51            | 0.90 | 1.00 | 2.51                |
| F              | 13.449        | 13.449            | 2.97            | 0.90 | 1.00 | 2.97                |
| А              | 13.449        | 13.449            | 2.97            | 0.90 | 1.00 | 2.97                |
| В              | 8.187         | 8.189             | 4.61            | 0.90 | 1.00 | 4.61                |
| С              | 5.263         | 8.078             | 5.73            | 0.90 | 0.65 | 5.44                |
| D              | 2.339         | 9.523             | 7.87            | 0.90 | 0.25 | 6.02                |

| Conclusions:                                                                                 | Unit     | Value |
|----------------------------------------------------------------------------------------------|----------|-------|
| SCOPon:                                                                                      | kWh/kWh  | 4.51  |
| SCOP:                                                                                        | kWh/kWh  | 4.50  |
| Q <sub>H</sub> :                                                                             | kWh/year | 31411 |
| Q <sub>HE</sub> :                                                                            | kWh/year | 6973  |
| $\eta_{s,h}$                                                                                 | %        | 177.2 |
| Seasonal space heating energy<br>efficiency classes: (According (EU)<br>No 811/2013 Table 2) |          | A+++  |



TÜV®





|                                                                                                                                                                                                          | пеаций шой                                                          | e (Medium t                                                                         | emperature                                                             | application                                                | ):                                                    |                                                   |                                                           | Р                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|
| Model                                                                                                                                                                                                    | Pro30i                                                              |                                                                                     |                                                                        |                                                            |                                                       |                                                   |                                                           |                                                    |
| Product<br>type                                                                                                                                                                                          | Air to Water Heating season Average D Warr                          |                                                                                     |                                                                        |                                                            |                                                       |                                                   | Colder                                                    |                                                    |
| 1. Test condit                                                                                                                                                                                           | ions:                                                               | •                                                                                   |                                                                        |                                                            |                                                       |                                                   |                                                           |                                                    |
| <b>•</b> •••                                                                                                                                                                                             | F                                                                   | Part Load Ra<br>in %                                                                | tio                                                                    | he                                                         | Outdoor<br>at exchang                                 | ger                                               |                                                           | or heat<br>anger                                   |
| Condition                                                                                                                                                                                                | Form                                                                | nula                                                                                | Average<br>climates                                                    |                                                            | t dry (wet) l<br>mperature (                          |                                                   |                                                           | tlet water<br>tures (°C)                           |
| А                                                                                                                                                                                                        | (-7-16)/(Tde                                                        | esignh-16)                                                                          | 88                                                                     |                                                            | -7(-8)                                                |                                                   | a                                                         | / 52                                               |
| В                                                                                                                                                                                                        | (+2-16)/ (Td                                                        | esignh-16)                                                                          | 54                                                                     |                                                            | 2(1)                                                  |                                                   | a                                                         | / 42                                               |
| С                                                                                                                                                                                                        | (+7-16)/(Td                                                         | esignh-16)                                                                          | 35                                                                     |                                                            | 7(6)                                                  |                                                   | a                                                         | / 36                                               |
| D                                                                                                                                                                                                        | (+12-16)/(To                                                        | lesignh-16)                                                                         | 15                                                                     |                                                            | 12(11)                                                |                                                   | a                                                         | / 30                                               |
| Е                                                                                                                                                                                                        | (TOL                                                                | 16)/ (Tdesig                                                                        | nh-16)                                                                 |                                                            | TOL                                                   |                                                   | a /                                                       | 55.3                                               |
| F                                                                                                                                                                                                        | (Tbival                                                             | ent-16)/(Tdes                                                                       | signh-16)                                                              |                                                            | Tbiv                                                  |                                                   | a / 52                                                    |                                                    |
| G                                                                                                                                                                                                        | (-15-16)/(Td                                                        | esignh-16)                                                                          | N/A                                                                    |                                                            | -15                                                   |                                                   | Ν                                                         | J/A                                                |
| conditions, the c                                                                                                                                                                                        | capacity is 12.6                                                    | 69kW, the p                                                                         | ower is 4.94                                                           |                                                            | •                                                     | •                                                 |                                                           | 11-2 at 47/3                                       |
| Remark: a) With<br>conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load                                                                                                 | capacity is 12.6                                                    | 69kW, the p                                                                         | ower is 4.94                                                           | 4kW, the CC                                                | P is 2.56kV                                           | •                                                 | A(-10)/<br>W55.3<br>(100%)                                |                                                    |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                        | capacity is 12.6                                                    | 69kW, the po<br>data(Averag                                                         | ower is 4.94<br>g <b>e):</b><br>A2/W42                                 | 4kW, the CC                                                | P is 2.56kV                                           | V/kW.<br>2/W30                                    | A(-10)/<br>W55.3                                          | A(-7)/ W52                                         |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/                                                                                                                                        | capacity is 12.6                                                    | 69kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)                                   | ower is 4.94<br>g <b>e):</b><br>A2/W42<br>(54%)                        | 4kW, the CC<br>2 A7/W<br>(35%                              | 36 A12<br>6) (1                                       | V/kW.<br>2/W30<br>5%)                             | A(-10)/<br>W55.3<br>(100%)                                | A(-7)/ W52<br>(88%)                                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump                                                                             | capacity is 12.6                                                    | 69kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A                              | ower is 4.94<br><b>ge):</b><br>A2/W42<br>(54%)<br>B                    | 4kW, the CC<br>2 A7/W<br>(35%                              | P is 2.56kV<br>36 A12<br>6) (1<br>00 1:               | V/kW.<br>2/W30<br>5%)<br>D                        | A(-10)/<br>W55.3<br>(100%)<br>E                           | A(-7)/ W52<br>(88%)<br>F                           |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts                                                                 | capacity is 12.6<br>/correction of<br>Unit<br><br>hh: min:sec       | 69kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00                   | ower is 4.94<br><b>ge):</b><br>A2/W42<br>(54%)<br>B<br>1:10:00         | 4kW, the CC<br>2 A7/W<br>(35%<br>C<br>1:10:                | P is 2.56kV<br>36 A12<br>6) (1<br>00 1:               | V/kW.<br>2/W30<br>5%)<br>D<br>10:00               | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W52<br>(88%)<br>F<br>1:10:00                |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br>Electrical Prop                                              | capacity is 12.6<br>/correction of<br>Unit<br><br>hh: min:sec       | 69kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00                   | ower is 4.94<br><b>ge):</b><br>A2/W42<br>(54%)<br>B<br>1:10:00         | 4kW, the CC<br>2 A7/W<br>(35%<br>C<br>1:10:                | P is 2.56kV                                           | V/kW.<br>2/W30<br>5%)<br>D<br>10:00               | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00                | A(-7)/ W52<br>(88%)<br>F<br>1:10:00                |
| conditions, the c<br><b>2.Tested data</b><br>General test<br>conditions/<br>Part-Load<br>Data collection<br>period<br>The heat pump<br>defrosts<br><b>Electrical Prop</b><br>Voltage<br>Current input of | <pre>capacity is 12.6 /correction d Unit hh: min:sec erties V</pre> | 69kW, the po<br>data(Averag<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00<br>No             | ower is 4.94<br>ge):<br>A2/W42<br>(54%)<br>B<br>1:10:00<br>No          | 4kW, the CC<br>2 A7/W<br>(35%<br>C<br>1:10:<br>No          | P is 2.56kV<br>36 A12<br>6) (1<br>00 1:<br>2 3        | V/kW.<br>2/W30<br>5%)<br>D<br>10:00<br>No         | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00<br>No          | A(-7)/ W52<br>(88%)<br>F<br>1:10:00<br>No          |
| conditions, the c<br>2.Tested data<br>General test<br>conditions/<br>Part-Load<br>Data collection                                                                                                        | Apacity is 12.6                                                     | 69kW, the post<br>data(Average<br>A(-7)/W52<br>(88%)<br>A<br>1:10:00<br>No<br>398.2 | ower is 4.94<br>ge):<br>A2/W42<br>(54%)<br>B<br>1:10:00<br>No<br>398.2 | 4kW, the CC<br>2 A7/W<br>(35%)<br>C<br>1:10:<br>No<br>398. | P is 2.56kV<br>36 A12<br>6) (1<br>00 1:<br>2 3<br>4 2 | V/kW.<br>2/W30<br>5%)<br>D<br>10:00<br>No<br>98.1 | A(-10)/<br>W55.3<br>(100%)<br>E<br>1:10:00<br>No<br>398.3 | A(-7)/ W52<br>(88%)<br>F<br>1:10:00<br>No<br>398.2 |

www.tuvsud.com





| Test conditions                        | s User Side  |        |       |         |         |        |        |
|----------------------------------------|--------------|--------|-------|---------|---------|--------|--------|
| Water flow                             | m³/h         | 1.35   | 1.35  | 1.35    | 1.35    | 1.35   | 1.35   |
| Inlet Water<br>temperature             | °C           | 44.57  | 37.47 | 33.09   | 28.70   | 47.14  | 44.57  |
| <b>Outlet</b> Water<br>temperature     | °C           | 52.02  | 42.00 | 38.30** | 34.53** | 55.01* | 52.02  |
| Test conditions                        | s Source Sid | le     |       |         |         |        |        |
| Barometric<br>pressure                 | kPa          | 99.85  | 99.85 | 99.85   | 99.80   | 99.75  | 99.85  |
| Air <b>inlet</b><br>temperature,<br>DB | °C           | -7.00  | 2.01  | 7.02    | 12.00   | -10.00 | -7.00  |
| Air <b>inlet</b><br>temperature,<br>WB | °C           | -8.00  | 1.01  | 6.01    | 11.00   | -11.00 | -8.00  |
| Summary of the                         | e results    |        |       |         |         |        |        |
| Total heating capacity                 | kW           | 11.770 | 7.182 | 8.258   | 9.228   | 12.447 | 11.770 |
| Effective power<br>input               | kW           | 5.433  | 1.961 | 1.623   | 1.437   | 5.933  | 5.433  |
| Coefficient of<br>performance<br>(COP) | kW/kW        | 2.17   | 3.66  | 5.09    | 6.42    | 2.10   | 2.17   |

inlet and outlet temperatures are been determined according to CI.11.5.1 of EN 14825:2022.

| Electric power consumptions         | Unit | Value |
|-------------------------------------|------|-------|
| Thermostat-off mode $[P_{TO}]$      | kW   | 0.029 |
| Standby mode [P <sub>SB</sub> ]     | kW   | 0.010 |
| Crankcase heater [P <sub>CK</sub> ] | kW   | 0.040 |
| Off mode [P <sub>OFF</sub> ]        | kW   | 0.010 |

www.tuvsud.com





| 3.Calculation  | conclusion        | for SCOP:         |                 |      |      |                     |
|----------------|-------------------|-------------------|-----------------|------|------|---------------------|
| Tdesignh(°C):  | -10 Tbiv(°C) : -7 |                   |                 |      |      |                     |
| Pdesignh(kW):  | 13.305            |                   | TOL(°C) :       | -10  |      |                     |
| Test result A, | B, C, D, E, F     | conditions        | 5:              |      |      |                     |
| Condition      | Part load         | Measured capacity | Measured<br>COP | Cdh  | CR   | COP<br>at part load |
| E              | 13.305            | 12.447            | 2.10            | 0.90 | 1.00 | 2.10                |
| F              | 11.770            | 11.770            | 2.17            | 0.90 | 1.00 | 2.17                |
| А              | 11.770            | 11.770            | 2.17            | 0.90 | 1.00 | 2.17                |
| В              | 7.164             | 7.182             | 3.66            | 0.90 | 1.00 | 3.66                |
| С              | 4.606             | 8.258             | 5.09            | 0.90 | 0.56 | 4.71                |
| D              | 2.047             | 9.228             | 6.42            | 0.90 | 0.22 | 4.76                |

| Conclusions:                                                                                 | Unit     | Value |
|----------------------------------------------------------------------------------------------|----------|-------|
| SCOPon:                                                                                      | kWh/kWh  | 3.62  |
| SCOP:                                                                                        | kWh/kWh  | 3.62  |
| Q <sub>H</sub> :                                                                             | kWh/year | 27489 |
| Q <sub>HE</sub> :                                                                            | kWh/year | 7603  |
| $\eta_{s,h}$                                                                                 | %        | 141.6 |
| Seasonal space heating energy<br>efficiency classes: (According (EU)<br>No 811/2013 Table 1) |          | A++   |



TÜV®





| Table 5a.  | Sound power level                   | Р                               |                                  |                    |
|------------|-------------------------------------|---------------------------------|----------------------------------|--------------------|
| Model      | Pro25i                              |                                 |                                  |                    |
|            | Product type :                      |                                 |                                  | Air to Water       |
|            | Outdoor heat exchar                 | nger, Air temperature D         | B/WB (°C):                       | 7.0 / 6.0          |
|            | Indoor heat exchang                 | er, Water inlet/outlet te       | emperature (°C):                 | 30.0 / 35.0        |
|            | Voltage (V):                        |                                 |                                  | 400                |
|            | Frequency (Hz):                     |                                 |                                  | 50                 |
|            | Working condition cl                | ass :                           |                                  | Class A            |
|            | Acoustical environme                | ent :                           |                                  | Hemi-anechoic room |
|            | Windshield type :                   |                                 |                                  | Sponge             |
|            | Measured position a                 | mount :                         |                                  | 14                 |
| Mea        | sured quantity                      | L <sub>WA,indoors</sub> (dB(A)) | L <sub>WA,outdoors</sub> (dB(A)) | Remark             |
| Sound pres | sure level `L <sub>p(ST)</sub> **** |                                 | 51                               |                    |
| Measureme  | ent distance d *                    |                                 |                                  |                    |
| Sound pow  | er level L <sub>wA</sub> ****       |                                 |                                  |                    |
| Duct conne |                                     |                                 | **) 3 decimal places; ****) nea  | rest integer       |



۳UV®



| Table 5b.  | Sound power level                    | Р                               |                                   |                    |
|------------|--------------------------------------|---------------------------------|-----------------------------------|--------------------|
| Model      | Pro25i                               |                                 |                                   |                    |
|            | Product type :                       |                                 |                                   | Air to Water       |
|            | Outdoor heat exchar                  | nger, Air temperature D         | B/WB (°C):                        | 7.0 / 6.0          |
|            | Indoor heat exchang                  | er, Water inlet/outlet te       | emperature (°C):                  | 47.0 / 55.0        |
|            | Voltage (V):                         |                                 |                                   | 400                |
|            | Frequency (Hz):                      |                                 |                                   | 50                 |
|            | Working condition cl                 | ass :                           |                                   | Class A            |
|            | Acoustical environme                 | ent :                           |                                   | Hemi-anechoic room |
|            | Windshield type :                    |                                 |                                   | Sponge             |
|            | Measured position a                  | mount :                         |                                   | 14                 |
| Mea        | sured quantity                       | L <sub>WA,indoors</sub> (dB(A)) | L <sub>WA,outdoors</sub> (dB(A))  | Remark             |
| Sound pres | ssure level `L <sub>p(ST)</sub> **** |                                 | 49                                |                    |
| Measureme  | ent distance d *                     |                                 |                                   |                    |
| Sound pow  | ver level L <sub>wA</sub> ****       |                                 |                                   |                    |
| Duct conne |                                      |                                 | **) 3 decimal places; ****) neare | est integer        |





| Table 6a.                                 | Sound power level measurement (Low temperature application) |                                 |                                  | Р                  |  |
|-------------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------------|--------------------|--|
| Model                                     | Pro30i                                                      |                                 |                                  |                    |  |
|                                           | Product type :                                              |                                 |                                  | Air to Water       |  |
|                                           | Outdoor heat exchanger, Air temperature DB/WB (°C):         |                                 |                                  | 7.0 / 6.0          |  |
|                                           | Indoor heat exchang                                         | er, Water inlet/outlet te       | emperature (°C):                 | 30.0 / 35.0        |  |
|                                           | Voltage (V):                                                |                                 |                                  | 400                |  |
|                                           | Frequency (Hz):                                             |                                 |                                  | 50                 |  |
|                                           | Working condition class :                                   |                                 |                                  | Class A            |  |
|                                           | Acoustical environment :                                    |                                 |                                  | Hemi-anechoic room |  |
|                                           | Windshield type :                                           | Windshield type :               |                                  |                    |  |
|                                           | Measured position amount :                                  |                                 |                                  | 14                 |  |
| Mea                                       | sured quantity                                              | L <sub>WA,indoors</sub> (dB(A)) | L <sub>WA,outdoors</sub> (dB(A)) | Remark             |  |
| Sound pres                                | sure level `L <sub>p(ST)</sub> ****                         |                                 | 57                               |                    |  |
| Measureme                                 | ent distance d *                                            |                                 | 1.0m                             |                    |  |
| Sound power level L <sub>wA</sub> **** 71 |                                                             |                                 | 71                               |                    |  |
| Duct conne                                |                                                             |                                 | **) 3 decimal places; ****) nea  | rest integer       |  |







| Table 6b.                                 | Sound power level measurement (Medium temperature application) |                                                     |                                   | Р                  |  |
|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|--------------------|--|
| Model                                     | Pro30i                                                         |                                                     |                                   |                    |  |
|                                           | Product type :                                                 |                                                     |                                   | Air to Water       |  |
|                                           | Outdoor heat exchar                                            | Outdoor heat exchanger, Air temperature DB/WB (°C): |                                   |                    |  |
|                                           | Indoor heat exchang                                            | er, Water inlet/outlet te                           | emperature (°C):                  | 47.0 / 55.0        |  |
|                                           | Voltage (V):                                                   |                                                     |                                   | 400                |  |
|                                           | Frequency (Hz):                                                |                                                     |                                   | 50                 |  |
|                                           | Working condition class :                                      |                                                     |                                   | Class A            |  |
|                                           | Acoustical environment :                                       |                                                     |                                   | Hemi-anechoic room |  |
|                                           | Windshield type :                                              | Windshield type :                                   |                                   |                    |  |
|                                           | Measured position amount :                                     |                                                     |                                   | 14                 |  |
| Mea                                       | sured quantity                                                 | L <sub>WA,indoors</sub> (dB(A))                     | L <sub>WA,outdoors</sub> (dB(A))  | Remark             |  |
| Sound pres                                | ssure level `L <sub>p(ST)</sub> ****                           |                                                     | 57                                |                    |  |
| Measurement distance d *                  |                                                                |                                                     | 1.0m                              |                    |  |
| Sound power level L <sub>wA</sub> **** 72 |                                                                |                                                     |                                   |                    |  |
| Duct conne                                |                                                                |                                                     | **) 3 decimal places; ****) neare | est integer        |  |





|                                         | Г             |  |  |
|-----------------------------------------|---------------|--|--|
|                                         |               |  |  |
| TEST 1 STARTING TEST (§4.2.1.2 Table 3) |               |  |  |
|                                         | r the besting |  |  |

Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.01°C, T in water = 9.76°C, Flow rate 1.04m<sup>3</sup>/h have been set and obtained. At those conditions, the machine was switched on.

Observation/ Evaluation: It started without any problem and worked for 30 minutes without showing any warning or alarm. During the test the machine operated in auto mode. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 2 OPERATING TEST (§4.2.1.2 Table 3)

Requirement: From the machine "lower" starting conditions - i.e. - the machine was brought to the lower operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.06°C, T in water = 70.18 °C, Flow rate 1.04m<sup>3</sup>/h. Once these conditions were obtained, the machine was let operate for over 1 hour in auto mode.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 3 SHUTTING OFF WATER FLOW (§ 4.5)

Requirement: The water flow rate was shuted off through manual and automatic valves of the test rig. The machine switched off and only the flow switch Protection appeared on the user interface of indoor unit.

Observation/ Evaluation: Perform error reset operation, once the water flow rate was restored, the machine restarted automatically and worked for 30 minutes normally. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 4 SHUTTING OFF AIR FLOW (§ 4.5)

Requirement: The air flow rate was shutted off through a plastic sheet and a panel. The machine never turned off. It continued to operate with continuous frosting and defrosting cycles. After more than half an hour, the air flow rate was restored and the machine started to operate normally.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 5 COMPLETE POWER SUPPLY FAILURE (§ 4.6)

Requirement: The power supply was cut off for about 5 seconds.

Observation/ Evaluation: The unit restarted automatically within about 3 minutes after the power supply was reactivated.

Test Response: Pass

www.tuvsud.com



| Table 8.                                                                                                       | Clause 4 of EN 14511-4:2022 | Р |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|---|--|--|
| Model:                                                                                                         | Pro30i                      |   |  |  |
| TEST 1 STARTING TEST (§4.2.1.2 Table 3)                                                                        |                             |   |  |  |
| Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode, i.e. |                             |   |  |  |

Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.11°C, T in water = 9.47°C, Flow rate 1.25m<sup>3</sup>/h have been set and obtained. At those conditions, the machine was switched on.

Observation/ Evaluation: It started without any problem and worked for 30 minutes without showing any warning or alarm. During the test the machine operated in auto mode. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 2 OPERATING TEST (§4.2.1.2 Table 3)

Requirement: From the machine "lower" starting conditions - i.e. - the machine was brought to the lower operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.13°C, T in water = 70.11 °C, Flow rate 1.25m<sup>3</sup>/h. Once these conditions were obtained, the machine was let operate for over 1 hour in auto mode.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 3 SHUTTING OFF WATER FLOW (§ 4.5)

Requirement: The water flow rate was shuted off through manual and automatic valves of the test rig. The machine switched off and only the flow switch Protection appeared on the user interface of indoor unit.

Observation/ Evaluation: Perform error reset operation, once the water flow rate was restored, the machine restarted automatically and worked for 30 minutes normally. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 4 SHUTTING OFF AIR FLOW (§ 4.5)

Requirement: The air flow rate was shutted off through a plastic sheet and a panel. The machine never turned off. It continued to operate with continuous frosting and defrosting cycles. After more than half an hour, the air flow rate was restored and the machine started to operate normally.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

### TEST 5 COMPLETE POWER SUPPLY FAILURE (§ 4.6)

Requirement: The power supply was cut off for about 5 seconds.

Observation/ Evaluation: The unit restarted automatically within about 3 minutes after the power supply was reactivated.

Test Response: Pass

www.tuvsud.com

### Appendix II Marking plate

### Nameplate

### Model: <u>Pro25i</u>

| DC INVERTE                                                 | ER HEAT PUMP          |  |  |
|------------------------------------------------------------|-----------------------|--|--|
| Model No.                                                  | Pro25i                |  |  |
| *Heating Capacity Range                                    | 5.25~15.00 kW         |  |  |
| *Heating input Range                                       | 1.28~3.63 kW          |  |  |
| *Heating COP Range                                         | 3.00~5.00 kW/kW       |  |  |
| **Heating Capacity Range                                   | 5.03~14.29 kW         |  |  |
| **Heating input Range                                      | 1.79~5.09 kW          |  |  |
| **Heating COP Range                                        | 2.02~3.41 kW/kW       |  |  |
| Power supply                                               | 380-415V/3N~/50Hz     |  |  |
| Rated current                                              | 9.5 A                 |  |  |
| Rated power input                                          | 5680 W                |  |  |
| Max exhaust pressure                                       | 3.1MPa                |  |  |
| Max suction pressure                                       | 0.9MPa                |  |  |
| Maximum allowable pressure                                 | 3.1MPa                |  |  |
| Refrigerant                                                | R290/1.30kg           |  |  |
| Max water temperature                                      | <b>65</b> ℃           |  |  |
| Degree of protection IPX4                                  |                       |  |  |
| Shockproof level                                           |                       |  |  |
| Earth requirement                                          | ≪0.1Ω                 |  |  |
| Net weight                                                 | 99 kg                 |  |  |
| Dimension                                                  | 1110*470*1010mm       |  |  |
| Water connection                                           |                       |  |  |
| Noise level                                                |                       |  |  |
| Working ambient temperature                                | -25℃~43℃              |  |  |
| water temperature 35°C<br>Dry bulb temperature 7°C, Wet    |                       |  |  |
| **Heating working condition: Inlet water temperature 47°C, |                       |  |  |
| Outlet water temperature 55°C                              |                       |  |  |
| Dry bulb temperature 7°C, Wet                              | bulb temperature 6°C. |  |  |
| Proteam Europa AS<br>Kokstaddalen 31, 5257 Koksta          | d, NORWAY             |  |  |
| X                                                          | CE 📐                  |  |  |

Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 23 of 31







### Appendix II Marking plate

### Nameplate

# Model: <u>Pro30i</u>

| DC INVERTER HEAT PUMP                             |                                  |  |  |  |
|---------------------------------------------------|----------------------------------|--|--|--|
| Model No.                                         | Pro30i                           |  |  |  |
| *Heating Capacity Range                           | 8.80~21.20 kW                    |  |  |  |
| *Heating input Range                              | 1.99~4.80 kW                     |  |  |  |
| *Heating COP Range                                | 3.10~5.30 kW/kW                  |  |  |  |
| **Heating Capacity Range                          | 7.94~19.13 kW                    |  |  |  |
| **Heating input Range                             | 2.71∼6.53 kW                     |  |  |  |
| **Heating COP Range                               | 2.05~3.52 kW/kW                  |  |  |  |
| Power supply                                      | 380-415V/3N~/50Hz                |  |  |  |
| Rated current                                     | 14 A                             |  |  |  |
| Rated power input                                 | 8.5 kW                           |  |  |  |
| Max exhaust pressure                              | 3.1MPa                           |  |  |  |
| Max suction pressure                              | 0.9MPa                           |  |  |  |
| Maximum allowable pressure                        | 3.1MPa                           |  |  |  |
| Refrigerant                                       | R290/1.60kg                      |  |  |  |
| Max water temperature                             | 65℃                              |  |  |  |
| Degree of protection                              | IPX4                             |  |  |  |
| Shockproof level                                  | 1                                |  |  |  |
| Earth requirement                                 | ≪0.1Ω                            |  |  |  |
| Net weight                                        | 135 kg                           |  |  |  |
| Dimension 1160*470*1280mm                         |                                  |  |  |  |
| Water connection 1 Inch                           |                                  |  |  |  |
| Noise level                                       | ≪73dB(A)                         |  |  |  |
| Working ambient temperature                       | -25℃~43℃                         |  |  |  |
| *Heating working condition: Inle                  | et water temperature 30°C, Outle |  |  |  |
| water temperature 35°C                            |                                  |  |  |  |
| Dry bulb temperature 7°C, Wet                     | bulb temperature 6°C.            |  |  |  |
| **Heating working condition: In                   | let water temperature 47°C,      |  |  |  |
| Outlet water temperature 55°C                     |                                  |  |  |  |
| Dry bulb temperature 7°C, Wet                     | bulb temperature 6°C.            |  |  |  |
| Proteam Europa AS<br>Kokstaddalen 31, 5257 Koksta |                                  |  |  |  |
| X                                                 | ςε 🔊                             |  |  |  |


Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 24 of 31 www.tuvsud.com

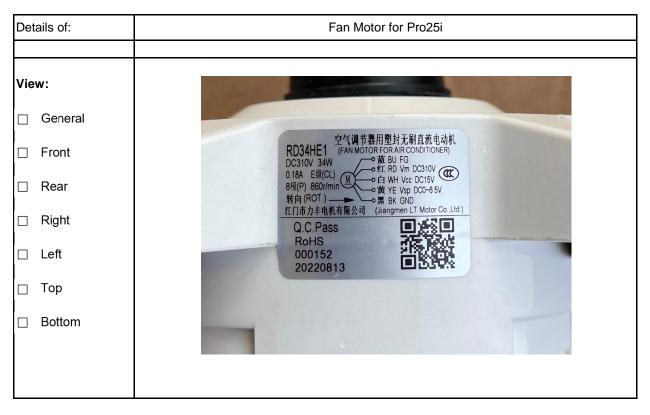


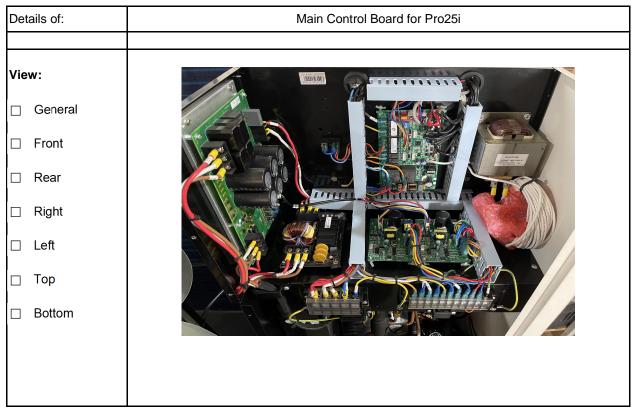


# Details of: Overall view for Pro25i View: General Front Rear Right Left Top Bottom

### Appendix III photo documentation




Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 25 of 31








### Appendix III photo documentation





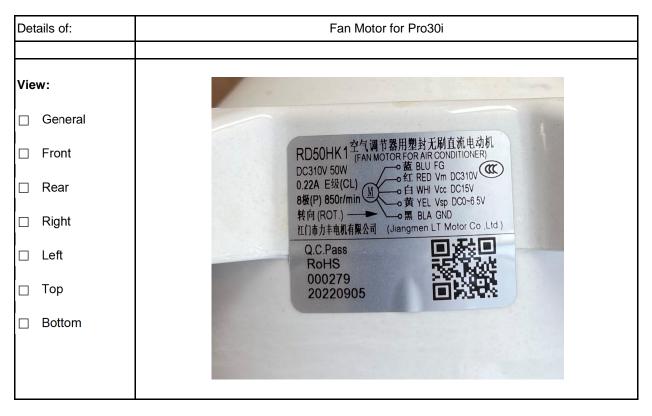
Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 26 of 31 www.tuvsud.com

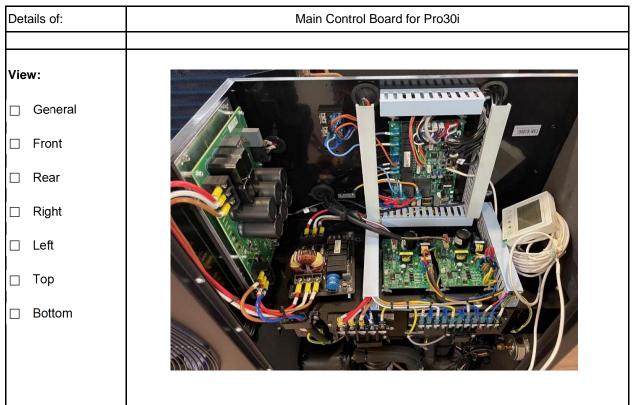




| Details of: | Overall view for Pro30i                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------------------|
| View:       |                                                                                                                |
| General     | 27 日本 · · · · · · · · · · · · · · · · · ·                                                                      |
| Front       | the second s |
| 🗆 Rear      |                                                                                                                |
| □ Right     |                                                                                                                |
| 🗆 Left      |                                                                                                                |
| 🗆 Тор       |                                                                                                                |
| □ Bottom    |                                                                                                                |
|             |                                                                                                                |
|             |                                                                                                                |

### Appendix III photo documentation





Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 27 of 31 www.tuvsud.com





### Appendix III photo documentation





Project No: 64.181.24.00325.01 Rev.: 00 Date: 2024-03-27 Page: 28 of 31







### Appendix IV Construction data form

| Model: <u>Pro25i</u>  |                 |                                                 |
|-----------------------|-----------------|-------------------------------------------------|
| Part                  |                 | Technical data                                  |
| 1. Compressor         |                 |                                                 |
|                       | Manufacture:    | SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD. |
|                       | Туре:           | WHP13300PSDPC8FQ                                |
|                       | Rated capacity: | 13300W                                          |
|                       | Serial-number:  | W6PN5H06376X                                    |
|                       | Specification:  | DC143.5V; R290                                  |
| 2. Condenser          |                 |                                                 |
|                       | Manufacture:    | SWEP TECHNOLOGY (SUZHOU) CO., LTD               |
|                       | Туре:           | F85H×30/1P-NSC-M                                |
|                       | Heat exchanger: | Plate heat exchanger                            |
|                       | Dimension(mm):  | 526×40.8×119                                    |
| 3. Evaporator         |                 |                                                 |
|                       | Manufacture:    | Foshan Huize Heat Exchange Equipment Co., Ltd.  |
|                       | Туре:           | Hydrophilic aluminum                            |
|                       | Heat exchanger: | Finned-coil heat exchanger                      |
|                       | Dimension(mm):  | 352*715*950                                     |
| 4. Fan motor          |                 |                                                 |
|                       | Manufacture:    | Jiangmen LT Motor Co., LTD                      |
|                       | Туре:           | RD34HE1                                         |
|                       | Fan type:       | 3 blade                                         |
|                       | Specification:  | DC310V; 34W                                     |
| 5. Main control board |                 |                                                 |
|                       | Manufacture:    | SHENZHEN MEGMEET ELECTRICAL CO., LTD.           |
|                       | Туре:           | HiPlus12000FC-GT35A                             |
|                       | Specification:  | AC380-415V; 50Hz                                |

www.tuvsud.com





### Appendix IV Construction data form

| Model: <u>Pro30i</u>  |                 |                                                    |
|-----------------------|-----------------|----------------------------------------------------|
| Part                  |                 | Technical data                                     |
| 1. Compressor         |                 |                                                    |
|                       | Manufacture:    | SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO.,<br>LTD. |
|                       | Туре:           | WHP32900VSKTQ9JK                                   |
|                       | Rated capacity: | 18160W                                             |
|                       | Serial-number:  | W82N1E02NMNJ                                       |
|                       | Specification:  | DC221V; R290                                       |
| 2. Condenser          |                 |                                                    |
|                       | Manufacture:    | SWEP TECHNOLOGY (SUZHOU) CO., LTD                  |
|                       | Туре:           | F85Hx50/1P-NSC-M                                   |
|                       | Heat exchanger: | Plate heat exchanger                               |
|                       | Dimension(mm):  | 526×40.8×119                                       |
| 3. Evaporator         |                 |                                                    |
|                       | Manufacture:    | Foshan Huize Heat Exchange Equipment Co., Ltd.     |
|                       | Туре:           | Hydrophilic aluminum                               |
|                       | Heat exchanger: | Finned-coil heat exchanger                         |
|                       | Dimension(mm):  | 400*717*1200                                       |
| 4. Fan motor          |                 |                                                    |
|                       | Manufacture:    | Jiangmen LT Motor Co., LTD                         |
|                       | Туре:           | RD50HK1                                            |
|                       | Fan type:       | 3 blade                                            |
|                       | Specification:  | DC310V; 50W                                        |
| 5. Main control board |                 |                                                    |
|                       | Manufacture:    | SHENZHEN MEGMEET ELECTRICAL CO., LTD.              |
|                       | Туре:           | HiPlus12000FC-GT35A                                |
|                       | Specification:  | AC380-415V; 50Hz                                   |

www.tuvsud.com





# Appendix V Equipment List

| No. | Туре                                                   | Manufacture                                       | Model         | Equipment ID  | Calibration Due<br>Date |
|-----|--------------------------------------------------------|---------------------------------------------------|---------------|---------------|-------------------------|
| 1   | Heat pump energy<br>efficiency testing system          | PINXIN                                            | 10HP          | 2017J00001    | 2023-11-24              |
| 2   | Electromagnetic<br>flowmeter                           | KROHNE                                            | OPTIFLUX4100C | H17221264     | 2023-12-21              |
| 3   | 20 Channel noise and vibration testing system          | RION                                              | SA-02M        | CQCSC-BE-0026 | 2024-01-11              |
| 4   | Nosie Testing Lab                                      | Beijing Zhongjia<br>Zhirui Technology<br>Co., LTD | ZR-02         | CQCSC-BE-0026 | 2023-11-22              |
| 5   | Nosie Testing Lab<br>(environmental control<br>system) | Beijing Zhongjia<br>Zhirui Technology<br>Co., LTD | ZR-02         | CQCSC-BE-0026 | 2023-11-22              |

-- End of Report --



