

Technical Report No.: 64.181.24.00324.01 Rev.00 Date: 2024-03-27

Client:	Name:	Proteam Europa AS
	Address:	Kokstaddalen 31, 5257 Kokstad, NORWAY
	Contact person:	Harald Einevoll
Manufacturer:	Name:	Proteam Europa AS
	Address:	Kokstaddalen 31, 5257 Kokstad, NORWAY
Factory:	Name:	FOSHAN GUANGTENG NEW ENERGY CO., LTD
	Address:	Section 2,Yongfeng Industrial Zone Lunjiao, Shunde, 528308 Foshan, Guangdong, People's Republic of China
Test object:	Product:	DC INVERTER HEAT PUMP
	Model:	Pro10i, Pro15i, Pro20i
	Trade mark:	
Test specification:	7	EN 14825:2022
	7	EN 14511-3:2022
	、	EN 14511-4:2022 Clause 4
		EN 12102-1:2022
Purpose of	Test according to the	test specification
examination:	7	(EU) No 813/2013
		EU 2016/2282:2016-11-30
Test result:	The test results show	that the presented product is in compliance with the above

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question. It does not imply a general statement regarding the quality of products from regular production. For further details please see testing and certification regulation, chapter A-3.4.

www.tuvsud.com

listed test specifications.

Technical Report

1 Description of the test object

1.1 Function

Manufacturer's specification for intended use: The appliance is air to water heat pump. Manufacturer's specification for predictive use: According to user manual

1.2 Consideration of the foreseeable use

- Not applicable
- ☑ Covered through the applied standard
- □ Covered by the following comment
- □ Covered by attached risk analysis

1.3 Technical Data

Model :	Pro10i, Pro15i, Pro20i				
Rated Voltage (V) :	220-240V~				
Rated Frequency (Hz) :	50				
Rated Power (W) :	3050W for Pro10i; 4130W for Pro15i; 6030W for Pro20i				
Rated Current (A) :	13.5A for Pro10i, 18.2A for Pro15i, 26.5A for Pro20i				
Protection Class :	Class I				
Protection Against Moisture :	IP X4				
Construction :	Stationary				
Supply connection :	Non detachable cord				
	Permanent connection to fixed wiring				
Operation mode:	Continuous operation;				
	□ Intermittent operation;				
	□ Short time operation;				
Refrigerant/charge (kg) :	R290 / 0.70kg for Pro10i, 1.10kg for Pro15i, 1.20kg for Pro20i				
Declared parameters :	Average Warmer Colder				
Sound power level dB(A) :	N/A				
Series No :	KSN0120Q2860 for Pro10i; KSN0130Q03918 for Pro15i; KSN0140Q00200 for Pro20i				

2 Order

2.1 Date of Purchase Order, Customer's Reference

Date of Purchase Order: 2022-08-15, 2023-04-07, 2024-01-19

Customer's Reference: Proteam Europa AS

2.2 Test Sample(s)

- Reception date(s): 2023-01-10, 2023-07-07
- Location(s) of reception:

For Energy test:

Guangzhou Customs District Technology Center (CNAS accredited laboratory with Registration No.CNAS L2322)

Address: No.3, Desheng East Road, Daliang, Shunde District, Foshan, Guangdong, China

For Noise tests:

China Quality Certification Centre South China Laboratory (CNAS accredited laboratory with Registration No.CNAS L4903)

Address: No.11, South of Shenghui Road, Nantou, Zhongshan, Guangdong, China

• Condition of test sample(s): completed and can be normal operation

2.3 Date(s) of Testing

2023-01-10 to 2023-02-25, 2023-07-07 to 2023-09-01

2.4 Location(s) of Testing

Same as 2.2

2.5 Points of Non-compliance or Exceptions of the Test Procedure N/A

3 Test Results

☑ Decision rule according to ILAC-G8:09/2019 clause 4.2.1 Binary statement for simple acceptance rule or IEC Guide 115:2023, clause 4.3 Simple acceptance was applied.

□ Decision rule according to customer's requirements was applied. It is:

 \Box Decision rule according to ILAC-G8:09/2019 clause 4.2.2 Binary statement with guard band - guard band length = 95 % extended measurement uncertainty, was applied.

 \Box Decision rule (based on ILAC-G8:09/2019 clause 4.2.3 Non-binary statement with guard band, guard band length = 95 % extended measurement uncertainty) for an upper specification limit (A lower limit or specification with an up-per and a lower limit is treated similarly.):

•Compliance with the requirement: If a specification limit is not breached by a measurement result plus the expanded uncertainty with a 95% coverage probability, then compliance with the specification will be stated (e. g. Pass).

•Non-compliance with the requirement: If a specification limit is exceeded by the measurement result minus the expanded uncertainty with a 95% coverage probability, then non-compliance with the specification will be stated (e. g. Fail).

•Inconclusive result: If a measurement result plus/minus the expanded uncertainty with a 95 % coverage probability overlaps the limit it will be stated that it is not possible to state compliance or non-compliance.

□ There are no statements to conformity or no results with measurand stated in this report, no decision rule has been applied.

www.tuvsud.com

3.1 Positive Test Results

See Appendix I

4 Remarks

4.1 General

The user manual has been examined according to the minimum requirements described in the product standard. The manufacturer is responsible for the accuracy of further par-ticulars as well as of the composition and layout.

4.2 When the product is placed on the market, it must be accompanied with safety Instruc-tions written in official language of the country. The instructions shall give information re-garding safe operation, installation and maintenance.

5 Documentation

- Appendix I: Test results
- Appendix II: Marking plate
- Appendix III: photo documentation
- Appendix IV: Construction data form
- Appendix V: Test equipment list

6 Test History

- These appliances are Air To Water Heat Pump Unit, each one including a whole compression type refrigerant circuit to heat water in another circuit. These appliances were for cooling and heating water function, this report only for heating capacity test.
- 2) The main power is supplied by a 3-pole supply cord connecting to fixed wiring.
- 3) Water enthalpy method was adopted in this report.
- 4) Standby mode power, off mode power and thermostat-off mode power were tested according to clause 12 of standard EN 14825:2022.
- 5) This test report 64.181.24.00324.01 Rev.00, dated 2024-03-27 bases on original test report 64.181.22.03424.02 Rev.00, dated 2023-09-21 to include the following changes and/or additions, which were considered technical modifications:

a) Changing report holder name and address, manufacturer name and address, trademark and model name.

b) After evaluating, no additional test was needed.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch TÜV SÜD Group

 Tested by:
 William Liang, Project Handler

 printed name, function & signature

 Approved by:
 Plum Li, Designated Reviewer <</td>

printed name, function & signature

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 4 of 44

	Heating mode (Low temperature application):									Р
Model	Pro10i									
Product type	Air to Water	Heating season	Average		Warme	er 🗆	С	older		
1. Test condit	ions:									
	F	Part Load Ra in %	itio		hea	Outdoo at excha				or heat anger
Condition	Form	nula		erage nates		dry (wet				tlet water tures (°C)
А	(-7-16)/(Tde	esignh-16)		88		-7(-8)			a	/ 34
В	(+2-16)/ (Td	esignh-16)		54		2(1)			a	/ 30
С	(+7-16)/(Td	esignh-16)		35		7(6)			a	/ 27
D	(+12-16)/(To	lesignh-16)		15		12(11)			a	/ 24
Е	(TOL	16)/ (Tdesig	gnh-16)			TOL			a /	35.3
F	(Tbival	ent-16)/(Tdes	signh-1	6)		Tbiv			a	/ 34
G	(-15-16)/(Td	esignh-16)	1	N/A		-15			N/A	
conditions, the c	capacity is 6.46	1kW, the por	wer is 1			•	•			
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	capacity is 6.46	1kW, the por	wer is 1 ge): A2			is 4.26k ¹	•		A(-10)/ W35.3 (100%)	
conditions, the c 2.Tested data General test conditions/	capacity is 6.46	data(Averag	wer is 1 ge): A2	.515kW, /W30	the COP	is 4.26k ¹	W/kW.		A(-10)/ W35.3	A(-7)/ W34
conditions, the c 2.Tested data General test conditions/	capacity is 6.46	data(Averag A(-7)/W34 (88%)	wer is 1 ge): A2 (5	1.515kW, /W30 i4%)	the COP A7/W2 (35%	is 4.26k ¹ 27 A)	W/kW. 12/W24 (15%)		A(-10)/ W35.3 (100%)	A(-7)/ W34 (88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	capacity is 6.46	ata(Averag A(-7)/W34 (88%)	wer is 1 ge): A2 (5	I.515kW, /W30 i4%) B	the COP A7/W2 (35% C	is 4.26k ¹ 27 A)	W/kW. 12/W24 (15%) D		A(-10)/ W35.3 (100%) E	A(-7)/ W34 (88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts	capacity is 6.46	A(-7)/W34 (88%) A(-1)/W34 (1:10:00	wer is 1 ge): A2 (5	I.515kW, /W30 i4%) B I0:00	the COP A7/W2 (35% C 1:10:0	is 4.26k ¹ 27 A)	W/kW. 12/W24 (15%) D 1:10:00		A(-10)/ W35.3 (100%) E 1:10:00	A(-7)/ W34 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop	capacity is 6.46	A(-7)/W34 (88%) A(-1)/W34 (88%)	wer is 1 ge): A2 (5	I.515kW, /W30 i4%) B I0:00	the COP A7/W2 (35% C 1:10:0	is 4.26k ¹ 27 A) 00	W/kW. 12/W24 (15%) D 1:10:00		A(-10)/ W35.3 (100%) E 1:10:00	A(-7)/ W34 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	<pre>capacity is 6.46 /correction d Unit hh: min:sec erties V</pre>	A (-7)/W34 (88%)	wer is 1 ge): A2 (5 1:1	I.515kW, /W30 i4%) B I0:00 No	the COP A7/W2 (35% C 1:10:0	is 4.26k ¹ 27 A) 10 3	W/kW. 12/W24 (15%) D 1:10:00 No		A(-10)/ W35.3 (100%) E 1:10:00 No	A(-7)/ W34 (88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	Apacity is 6.46	229.7	wer is 1 ge): A2 (5 1:*	I.515kW, /W30 i4%) B I0:00 No 29.8	the COP A7/W2 (35% C 1:10:0 No 229.8	is 4.26k ¹ 27 A) 10 3	W/kW. 12/W24 (15%) D 1:10:00 No 229.9		A(-10)/ W35.3 (100%) E 1:10:00 No 229.7	A(-7)/ W34 (88%) F 1:10:00 No 229.7

www.tuvsud.com

Test condition	s User Side						
Water flow	m³/h	1.12	1.12	1.12	1.12	1.12	1.12
Inlet Water temperature	°C	30.13	27.66	25.51**	23.34**	31.59	30.13
Outlet Water temperature	°C	33.97	29.98	27.93**	26.19**	35.28	33.97
Test condition	s Source Sid	e					
Barometric pressure	kPa	101.02	101.01	101.01	101.02	101.01	101.02
Air inlet temperature, DB	°C	-7.00	2.08	7.01	12.00	-10.00	-7.00
Air inlet temperature, WB	°C	-8.02	1.01	6.00	11.00	-11.01	-8.02
Summary of th	e results						
Total heating capacity	kW	5.017	3.056	3.174	3.737	4.829	5.017
Effective power input	kW	1.741	0.681	0.524	0.469	1.846	1.741
Coefficient of performance (COP)	kW/kW	2.88	4.48	6.06	7.97	2.62	2.88

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode [P _{TO}]	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

www.tuvsud.com

Tdesignh(°C):	-10		Tbiv(°C) :	-7		
Pdesignh(kW):	5.672		TOL(°C) :	-10		
Test result A,	B, C, D, E, F	conditions	5:			
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load
E	5.672	4.829	2.62	0.90	1.00	2.62
F	5.017	5.017	2.88	0.90	1.00	2.88
А	5.017	5.017	2.88	0.90	1.00	2.88
В	3.054	3.056	4.48	0.90	1.00	4.48
С	1.963	3.174	6.06	0.90	0.62	5.71
D	0.873	3.737	7.97	0.90	0.23	6.00

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	4.48
SCOP:	kWh/kWh	4.46
Q _H :	kWh/year	11718
Q _{HE} :	kWh/year	2626
$\eta_{s,h}$	%	175.5
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 2)		A+++

www.tuvsud.com

	Heating mode (Medium temperature application):								Р	
Model	Pro10i									
Product type	Air to Water Heating season			Average		Warm	er		Colder	
1. Test condit	ions:									
Condition	F	Part Load Ra in %	tio		hea	Outdoo at excha				or heat hanger
Condition	Form	iula		/erage mates		dry (we				tlet water tures (°C)
А	(-7-16)/(Tde	esignh-16)		88		-7(-8))		а	/ 52
В	(+2-16)/ (Td	esignh-16)		54		2(1)			а	/ 42
С	(+7-16)/(Tde	esignh-16)		35		7(6)			а	/ 36
D	(+12-16)/(Td	lesignh-16)		15		12(11))		а	/ 30
Е	(TOL	-16)/ (Tdesig	nh-16))		TOL			a/	55.3
F	(Tbival	ent-16)/(Tdes	signh-1	16)		Tbiv			а	/ 52
G	(-15-16)/(Td	esignh-16)		N/A		-15			Ν	J/A
conditions, the c	capacity is 5.74	3kW, the pov	wer is :			is 2.83k				
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	capacity is 5.74	3kW, the pov	wer is : ge): A2			36 A		V. /30	A(-10)/ W55.3 (100%)	A(-7)/ W52 (88%)
conditions, the c 2.Tested data General test conditions/	capacity is 5.74	3kW, the por data(Averag	wer is : ge): A2	2.028kW,	the COP	36 A	(W/k) A12/V	V. /30	A(-10)/ W55.3	A(-7)/ W52
conditions, the c 2.Tested data General test conditions/	capacity is 5.74	3kW, the por data(Averag A(-7)/W52 (88%)	wer is : ge): A2	2.028kW, 2/W42 54%)	the COP A7/W3 (35%	36 A	<w k\<br="">A12/V (159</w>	V. /30 6)	A(-10)/ W55.3 (100%)	A(-7)/ W52 (88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	capacity is 5.74	3kW, the por data(Averag A(-7)/W52 (88%) A	wer is : ge): A2	2.028kW, 2/W42 54%) B	A7/W3 (35%	36 A	<w k\<br="">A12/V (159 D</w>	V. /30 6) 00	A(-10)/ W55.3 (100%) E	A(-7)/ W52 (88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts	Apacity is 5.74	3kW, the por Jata(Averag A(-7)/W52 (88%) A 1:10:00	wer is : ge): A2	2.028kW, 2/W42 54%) B 10:00	the COP A7/W3 (35% C 1:10:0	36 A	412/V (159 D 1:10:	V. /30 6) 00	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W52 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop	Apacity is 5.74	3kW, the por Jata(Averag A(-7)/W52 (88%) A 1:10:00	wer is : ge): A2 (\$	2.028kW, 2/W42 54%) B 10:00	the COP A7/W3 (35% C 1:10:0	36 A) 10	412/V (159 D 1:10:	V. /30 (6) 00	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W52 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	Apacity is 5.74	3kW, the por Jata(Averag A(-7)/W52 (88%) A 1:10:00 No	wer is : ge): A2 (! 1: 2	2.028kW, 2/W42 54%) B 10:00 No	the COP A7/W3 (35% C 1:10:0 No	36 A) 10	A12/V (159 1:10: No	V. /30 6) 00 8	A(-10)/ W55.3 (100%) E 1:10:00 No	A(-7)/ W52 (88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	Apacity is 5.74	3kW, the por Jata(Averag A(-7)/W52 (88%) A 1:10:00 No 229.8	wer is : ge): A2 (! 1: 2 2	2.028kW, 2/W42 54%) B 10:00 No 229.9	the COP A7/W3 (35% C 1:10:0 No 229.8	36 A) 10 3	<w k\<br="">A12/V (159 D 1:10: Nc 229</w>	V. /30 6) 00 8 5	A(-10)/ W55.3 (100%) E 1:10:00 No 229.8	A(-7)/ W52 (88%) F 1:10:00 No 229.8

www.tuvsud.com

Water flow	m³/h	0.62	0.62	0.62	0.62	0.62	0.62
Inlet Water temperature	°C	44.99	37.74	33.32**	28.79**	48.38	44.99
Outlet Water temperature	°C	52.03	41.98	37.30**	33.74**	55.00*	52.03
Test conditions	s Source Sic	le					
Barometric pressure	kPa	99.85	99.85	99.85	99.80	99.75	99.85
Air inlet temperature, DB	°C	-7.00	2.00	7.01	12.00	-10.00	-7.00
Air inlet temperature, WB	°C	-8.00	1.02	6.01	11.00	-10.98	-8.00
Summary of the	e results			•			
Total heating capacity	kW	5.023	3.069	2.875	3.583	4.780	5.023
Effective power input	kW	2.162	0.848	0.621	0.545	2.246	2.162
Coefficient of performance (COP)	kW/kW	2.32	3.62	4.63	6.58	2.13	2.32

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode $[P_{TO}]$	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

ß

TÜV

3.Calculation	conclusion	tor SCOP:				
Tdesignh(°C):	-10		Tbiv(°C) :	-7		
Pdesignh(kW):	5.678		TOL(°C) :	-10		
Test result A,	B, C, D, E, F	conditions	5:			
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load
E	5.678	4.780	2.13	0.90	1.00	2.13
F	5.023	5.023	2.32	0.90	1.00	2.32
А	5.023	5.023	2.32	0.90	1.00	2.32
В	3.058	3.069	3.62	0.90	1.00	3.62
С	1.966	2.875	4.63	0.90	0.68	4.42
D	0.874	3.583	6.58	0.90	0.24	5.02

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	3.60
SCOP:	kWh/kWh	3.58
Q _H :	kWh/year	11731
Q _{HE} :	kWh/year	3274
$\eta_{s,h}$	%	140.3
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 1)		A++

TÜV®

	able 3. Heating mode (Low temperature application):									Р
Model	Pro15i									
Product type	Air to Water	Heating season	7	Average		Warm	armer 🗆		Colder	
1. Test condit	ions:								•	
	F	Part Load Ra in %	itio		hea	Outdo at exch		r		or heat anger
Condition	Form	nula		/erage mates		t dry (we			Inlet/ou	tlet water tures (°C)
А	(-7-16)/(Tde	esignh-16)		88		-7(-8))		а	/ 34
В	(+2-16)/ (Td	esignh-16)		54		2(1)			а	/ 30
С	(+7-16)/(Tde	esignh-16)		35		7(6)			а	/ 27
D	(+12-16)/(Td	lesignh-16)		15		12(11	I)		а	/ 24
Е	(TOL	16)/ (Tdesig	gnh-16))		TOL			a /	35.3
F	(Tbival	ent-16)/(Tdes	signh-1	16)		Tbiv	1		а	/ 34
G	(-15-16)/(Td	esignh-16)		N/A		-15			Ν	J/A
conditions, the c	capacity is 8.28	4kW, the po	wer is							
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	capacity is 8.28	4kW, the po	wer is ' ge): A2			is 4.19		W. V24	A(-10)/ W35.3 (100%)	
conditions, the c 2.Tested data General test conditions/	capacity is 8.28	data(Averag	wer is ' ge): A2	1.979kW, 2/W30	the COP	is 4.19	kW/k' A12/\	W. V24 %)	A(-10)/ W35.3	A(-7)/ W34
conditions, the c 2.Tested data General test conditions/	capacity is 8.28	data(Averag A(-7)/W34 (88%)	wer is ge): A2	1.979kW, 2/W30 54%)	the COP A7/W2 (35%	is 4.191	kW/k ['] A12/\ (15 ⁴	W. V24 %)	A(-10)/ W35.3 (100%)	A(-7)/ W34 (88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	correction o	4kW, the por data(Averag A(-7)/W34 (88%) A	wer is ge): A2	1.979kW, 2/W30 54%) B	the COP A7/W2 (35% C	is 4.191	kW/k ['] A12/\ (15' D	W. W24 %)	A(-10)/ W35.3 (100%) E	A(-7)/ W34 (88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts		A(-7)/W34 (88%) A 1:10:00	wer is ge): A2	1.979kW, 2/W30 54%) B 10:00	the COP A7/W2 (35% C 1:10:0	is 4.191	kW/k A12/\ (15' D 1:10	W. W24 %)	A(-10)/ W35.3 (100%) E 1:10:00	A(-7)/ W34 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop		A(-7)/W34 (88%) A 1:10:00	wer is ge): A2 ((1.979kW, 2/W30 54%) B 10:00	the COP A7/W2 (35% C 1:10:0	is 4.19/	kW/k A12/\ (15' D 1:10	W. W24 %) :00	A(-10)/ W35.3 (100%) E 1:10:00	A(-7)/ W34 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	<pre>capacity is 8.28 /correction c Unit hh: min:sec erties V</pre>	A(-7)/W34 (88%) A(-7)/W34 (88%) A 1:10:00 No	wer is ge): A2 (! 1: 2	1.979kW, 2/W30 54%) B 10:00 No	the COP A7/W2 (35% C 1:10:0 No	is 4.19/	kW/k (15° 1:10	W. W24 %) :00 .1	A(-10)/ W35.3 (100%) E 1:10:00 No	A(-7)/ W34 (88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	<pre>capacity is 8.28 /correction c Unit hh: min:sec erties V</pre>	24kW, the por 2ata(Average A(-7)/W34 (88%) A 1:10:00 No 229.7	wer is ge): A2 (! 1: 2	1.979kW, 2/W30 54%) B 10:00 No 230.0	the COP A7/W2 (35% C 1:10:C No 230.C	is 4.19	kW/k A12/\ (15° 1:10 No 230	W. W24 %) :00 .1 4	A(-10)/ W35.3 (100%) E 1:10:00 No 229.7	A(-7)/ W34 (88%) F 1:10:00 No 229.7

www.tuvsud.com

Test conditions	s User Side						
Water flow	m³/h	1.42	1.42	1.42	1.42	1.42	1.42
Inlet Water temperature	°C	30.59	27.95	25.67**	23.40**	32.08	30.59
Outlet Water temperature	°C	34.02	30.03	28.35**	26.30**	35.31	34.02
Test conditions	s Source Sid	le					
Barometric pressure	kPa	101.02	101.01	101.01	101.02	101.01	101.02
Air inlet temperature, DB	°C	-7.00	2.01	7.01	12.00	-10.00	-7.00
Air inlet temperature, WB	°C	-7.99	1.01	6.01	11.00	-11.01	-7.99
Summary of th	e results						
Total heating capacity	kW	5.669	3.458	4.462	4.835	5.372	5.669
Effective power input	kW	2.057	0.740	0.709	0.621	2.518	2.057
Coefficient of performance (COP)	kW/kW	2.76	4.67	6.30	7.79	2.13	2.76

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode [P _{TO}]	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

3.Calculation	/conclusion	for SCOP:				
Tdesignh(°C):	-10		Tbiv(°C) :	-7		
Pdesignh(kW):	6.409		TOL(°C) :	-10		
Test result A,	B, C, D, E, F	conditions	5:	•		
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load
E	6.409	5.372	2.13	0.90	1.00	2.13
F	5.669	5.669	2.76	0.90	1.00	2.76
А	5.669	5.669	2.76	0.90	1.00	2.76
В	3.451	3.458	4.67	0.90	1.00	4.67
С	2.218	4.462	6.30	0.90	0.50	5.72
D	0.986	4.835	7.79	0.90	0.20	5.60

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	4.50
SCOP:	kWh/kWh	4.48
Q _H :	kWh/year	13241
Q _{HE} :	kWh/year	2954
$\eta_{s,h}$	%	176.3
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 2)		A+++

www.tuvsud.com

	able 4. Heating mode (Medium temperature application):									Р
Model	Pro15i									
Product type	Air to Water	Heating season		verage		Warm	armer 🗆		Colder	
1. Test condit	ions:								•	
	F	Part Load Ra in %	itio		hea	Outdo at excha		r		or heat hanger
Condition	Form		Aver clima	-	Inlet	dry (we	et) bu	lb	Inlet/ou	itlet water atures (°C)
А	(-7-16)/(Tde	esignh-16)	88	3		-7(-8))	-	а	/ 52
В	(+2-16)/ (Td	esignh-16)	54	1		2(1)			а	/ 42
С	(+7-16)/(Tde	esignh-16)	35	5		7(6)			а	/ 36
D	(+12-16)/(To	lesignh-16)	15	5		12(11	I)		а	/ 30
Е	(TOL	-16)/ (Tdesig	gnh-16)			TOL	-		a /	55.3
F	(Tbival	ent-16)/(Tdes	signh-16)			Tbiv	,		а	/ 52
G	(-15-16)/(Td	esignh-16)	N/	A		-15			1	N/A
conditions, the c	capacity is 7.20	00kW, the po	wer is 2.7							11-2 at 47/3
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	capacity is 7.20	00kW, the po	wer is 2.7	726kW, V42		is 2.64		W. V30	A(-10)/ W55.3 (100%)	A(-7)/ W5. (88%)
conditions, the c 2.Tested data General test conditions/	capacity is 7.20	00kW, the por data(Averag	wer is 2.7 ge): A2/V	726kW, V42 %)	the COP	is 2.64	kW/k\ A12/V	V. V30 %)	A(-10)/ W55.3	A(-7)/ W5
conditions, the c 2.Tested data General test conditions/	capacity is 7.20	00kW, the por data(Averag A(-7)/W52 (88%)	wer is 2.7 ge): A2/V (54	726kW, V42 %)	the COP A7/W3 (35%	is 2.64	kW/k\ A12/V (159	W. V30 %)	A(-10)/ W55.3 (100%)	A(-7)/ W5 (88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	capacity is 7.20	00kW, the por data(Averag A(-7)/W52 (88%) A	wer is 2.7 ge): (54 B	726kW, V42 %) :00	A7/W3 (35%	is 2.64	kW/k\ A12/V (15% D	W. V30 %)	A(-10)/ W55.3 (100%) E	A(-7)/ W5 (88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts	Apacity is 7.20	00kW, the por data(Averag A(-7)/W52 (88%) A 1:10:00	wer is 2.7 ge): (54 B 1:10	726kW, V42 %) :00	the COP A7/W3 (35% C 1:10:0	is 2.64	kW/k\ A12/V (159 D 1:10:	W. V30 %)	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W5 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop	Apacity is 7.20	00kW, the por data(Averag A(-7)/W52 (88%) A 1:10:00	wer is 2.7 ge): (54 B 1:10	726kW, 726kW, %) :00	the COP A7/W3 (35% C 1:10:0	is 2.64	kW/k\ A12/V (159 D 1:10:	V30 %)	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W5 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	Apacity is 7.20 /correction of Unit hh: min:sec erties V	00kW, the por data(Averag A(-7)/W52 (88%) A 1:10:00 No	wer is 2.7 ge): A2/V (54 B 1:10 No	726kW, 726KW, 726KW, 726KW, 726KW, 727KW, 72	the COP A7/W3 (35%) C 1:10:0	is 2.64	kW/k\ A12/V (159 D 1:10: No	V30 %) :00	A(-10)/ W55.3 (100%) E 1:10:00 No	A(-7)/ W5. (88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	correction of vertices	229.9	wer is 2.7 ge): A2/V (54 B 1:10 No 229	726kW, V42 %) :00 0.8 66	the COP A7/W3 (35% C 1:10:C No 229.S	is 2.64	kW/k\ A12/V (159 D 1:10: No 230	V30 %) :00 .0 6	A(-10)/ W55.3 (100%) E 1:10:00 No 229.7	A(-7)/ W5 (88%) F 1:10:00 No 229.9

www.tuvsud.com

Test conditions	s User Side						
Water flow	m³/h	0.77	0.77	0.77	0.77	0.77	0.77
Inlet Water temperature	°C	45.22	37.81	33.37**	28.82**	48.17	45.22
Outlet Water temperature	°C	52.02	42.01	38.25**	34.35**	55.05*	52.02
Test conditions	s Source Sid	le					
Barometric pressure	kPa	99.85	99.85	99.85	99.80	99.75	99.85
Air inlet temperature, DB	°C	-7.00	2.03	7.01	12.00	-10.00	-7.00
Air inlet temperature, WB	°C	-8.01	1.01	6.01	11.00	-11.00	-8.01
Summary of th	e results						
Total heating capacity	kW	6.108	3.774	4.388	4.969	6.185	6.108
Effective power input	kW	3.107	1.022	0.857	0.754	2.920	3.107
Coefficient of performance (COP)	kW/kW	1.97	3.69	5.12	6.59	2.12	1.97

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode [P _{TO}]	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

www.tuvsud.com

3.Calculation				T		
Tdesignh(°C):	-10		Tbiv(°C) :	-7		
Pdesignh(kW):	6.905		TOL(°C) :	-10		
Test result A,	B, C, D, E, F	conditions	5:			
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load
E	6.905	6.185	2.12	0.90	1.00	2.12
F	6.108	6.108	1.97	0.90	1.00	1.97
А	6.108	6.108	1.97	0.90	1.00	1.97
В	3.718	3.774	3.69	0.90	0.99	3.69
С	2.390	4.388	5.12	0.90	0.54	4.72
D	1.062	4.969	6.59	0.90	0.21	4.82

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	3.58
SCOP:	kWh/kWh	3.57
Q _H :	kWh/year	14266
Q _{HE} :	kWh/year	3997
$\eta_{s,h}$	%	139.8
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 1)		A++

www.tuvsud.com

	e 5. Heating mode (Low temperature application):									Р
Model	Pro20i									
Product type	Air to Water	Heating season	7	Average		War	/armer 🗆		Colder	
1. Test condit	ions:									
Condition	F	Part Load Ra in %	itio		hea	Outde at excl		er		or heat anger
Condition	Form	iula		verage mates		: dry (w nperatu	,			tlet water tures (°C)
А	(-7-16)/(Tde	esignh-16)		88		-7(-8	8)		а	/ 34
В	(+2-16)/ (Td	esignh-16)		54		2(1)		а	/ 30
С	(+7-16)/(Tde	esignh-16)		35		7(6	6)		а	/ 27
D	(+12-16)/(Td	lesignh-16)		15		12(1	1)		а	/ 24
E	(TOL	-16)/ (Tdesig	gnh-16)		ТО	L		a /	35.3
F	(Tbival	ent-16)/(Tdes	signh-′	16)		Tbi	iv		а	/ 34
G	(-15-16)/(Td	esignh-16)		N/A		-15	5		Ν	J/A
conditions, the c	apacity is 12.1	38kW, the po	ower is			P is 4.3	31kW	/kW.		
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	apacity is 12.1	38kW, the po	ower is ge):			27		W24	A(-10)/ W35.3 (100%)	A(-7)/ W34 (88%)
conditions, the c 2.Tested data General test conditions/	capacity is 12.1	38kW, the po data(Averag A(-7)/W34	ower is ge):	s 2.814kW 2/W30	, the COI	27	A12/	W24 %)	W35.3	
conditions, the c 2.Tested data General test conditions/	capacity is 12.1	38kW, the po data(Averag A(-7)/W34 (88%)	ower is ge): A2 (!	s 2.814kW 2/W30 54%)	, the COI A7/W2 (35%	27	A12/ (15	W24 %))	W35.3 (100%)	(88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	capacity is 12.1	38kW, the po data(Averag A(-7)/W34 (88%) A	ower is ge): A2 (!	s 2.814kW 2/W30 54%) B	A7/W2 (35%) C	27	A12/ (15	W24 %))):00	W35.3 (100%) E	(88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	correction of Unit	38kW, the po Jata(Averag A(-7)/W34 (88%) A 1:10:00	ower is ge): A2 (!	s 2.814kW 2/W30 54%) B :10:00	A7/W2 (35%) C 1:10:0	27	A12/ (15 [1:1(W24 %))):00	W35.3 (100%) E 1:10:00	(88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts	correction of Unit	38kW, the po Jata(Averag A(-7)/W34 (88%) A 1:10:00	ower is ge): A2 (! 1:	s 2.814kW 2/W30 54%) B :10:00	A7/W2 (35%) C 1:10:0	27) 00	A12/ (15 [1:1(W24 %))):00	W35.3 (100%) E 1:10:00	(88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop	Apacity is 12.1 /correction of Unit hh: min:sec erties V	38kW, the po Jata(Averag A(-7)/W34 (88%) A 1:10:00 No	ower is ge): A2 (! 1:	s 2.814kW 2/W30 54%) B :10:00 No	A7/W2 (35%) C 1:10:0	27) 00 3	A12/ (15 [1:10 N 230	W24 %))):00 o	W35.3 (100%) E 1:10:00 No	(88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	Apacity is 12.1 /correction of Unit hh: min:sec erties V	38kW, the po data(Averag A(-7)/W34 (88%) A 1:10:00 No 229.8	ower is ge): A2 (; 1:	s 2.814kW 2/W30 54%) B :10:00 No 230.4	A7/W2 (35%) C 1:10:0 No	27)	A12/ (15 [1:10 N 230 3.9	W24 %)):00):00 0.3	W35.3 (100%) E 1:10:00 No 229.6	(88%) F 1:10:00 No 229.8

www.tuvsud.com

Test conditions	s User Side						
Water flow	m³/h	2.10	2.10	2.10	2.10	2.10	2.10
Inlet Water temperature	°C	30.12	27.49	25.46**	23.35**	31.37	30.12
Outlet Water temperature	°C	34.03	29.90	27.91**	26.18**	35.16	34.03
Test conditions	s Source Sid	le					
Barometric pressure	kPa	101.02	101.01	101.01	101.02	101.01	101.02
Air inlet temperature, DB	°C	-7.00	2.08	7.00	11.98	-10.00	-7.00
Air inlet temperature, WB	°C	-7.96	1.03	6.00	11.01	-11.01	-7.96
Summary of th	e results	<u> </u>					
Total heating capacity	kW	9.602	5.927	6.019	6.962	9.209	9.602
Effective power input	kW	3.165	1.273	1.017	0.878	3.377	3.165
Coefficient of performance (COP)	kW/kW	3.03	4.66	5.92	7.93	2.73	3.03

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode [P _{TO}]	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

R

TÜV

3.Calculation/conclusion for SCOP:							
Tdesignh(°C):	-10		Tbiv(°C) :	-7			
Pdesignh(kW):	10.855		TOL(°C) :	-10			
Test result A,	B, C, D, E, F	conditions	:				
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load	
E	10.855	9.209	2.73	0.90	1.00	2.73	
F	9.602	9.602	3.03	0.90	1.00	3.03	
А	9.602	9.602	3.03	0.90	1.00	3.03	
В	5.845	5.927	4.66	0.90	0.99	4.66	
С	3.757	6.019	5.92	0.90	0.62	5.58	
D	1.670	6.962	7.93	0.90	0.24	6.02	

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	4.59
SCOP:	kWh/kWh	4.57
Q _H :	kWh/year	22426
Q _{HE} :	kWh/year	4902
η _{s,h}	%	180.0
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 2)		A+++

TÜV®

	Heating mode (Medium temperature application):							Р		
Model	Pro20i									
Product type	Air to Water Heating Season			Average		Warme	er 🗆		Colder	
1. Test condit	ions:									
• • • •	F	Part Load Ra in %	itio		hea	Outdoo at excha				or heat anger
Condition	Form	nula		erage nates		dry (we			Inlet/ou	tlet water tures (°C)
А	(-7-16)/(Tde	esignh-16)	8	88		-7(-8)			a	/ 52
В	(+2-16)/ (Td	esignh-16)		54		2(1)			a	/ 42
С	(+7-16)/(Tde	esignh-16)	:	35		7(6)			a	/ 36
D	(+12-16)/(To	lesignh-16)		15		12(11)			a	/ 30
E	(TOL	-16)/ (Tdesig	gnh-16)			TOL			a /	55.3
F	(Tbival	ent-16)/(Tdes	signh-1	6)		Tbiv			a	/ 52
G	(-15-16)/(Td	esignh-16)	Ν	J/A		-15			Ν	J/A
conditions, the c	apacity is 11.5	12kW, the p	ower is							11 2 dt 4770
Remark: a) With conditions, the c 2.Tested data General test conditions/ Part-Load	apacity is 11.5	12kW, the p	ower is ge): A2/			P is 3.01		Ϊ.	A(-10)/ W55.3 (100%)	A(-7)/ W5. (88%)
conditions, the c 2.Tested data General test conditions/	capacity is 11.5	12kW, the po data(Averag	ower is ge): A2/ (5	3.823kW /W42	, the COI	P is 3.01	kW/kW	Ϊ.	A(-10)/ W55.3	A(-7)/ W5
conditions, the c 2.Tested data General test conditions/	capacity is 11.5	data(Averag A(-7)/W52 (88%)	ower is ge): A2/ (5	3.823kW /W42 4%)	, the COI A7/W3 (35%	P is 3.01	kW/kW	0	A(-10)/ W55.3 (100%)	A(-7)/ W5 (88%)
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection	correction of Unit	12kW, the po data(Averag A(-7)/W52 (88%) A	ower is ge): A2/ (5	3.823kW /W42 4%) B	, the COI A7/W3 (35% C	P is 3.01	kW/kW 12/W3 (15%) D	0	A(-10)/ W55.3 (100%) E	A(-7)/ W5 (88%) F
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts	correction of Unit	A (-7)/W52 (88%) A 1:10:00	ower is ge): A2/ (5	3.823kW W42 4%) B 0:00	, the COI A7/W3 (35% C 1:10:0	P is 3.01	kW/kW	0	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W5 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop	correction of Unit	A (-7)/W52 (88%) A 1:10:00	ower is ge): A2/ (5	3.823kW W42 4%) B 0:00	, the COI A7/W3 (35% C 1:10:0	 is 3.01 36 A) 00 	kW/kW	0	A(-10)/ W55.3 (100%) E 1:10:00	A(-7)/ W5 (88%) F 1:10:00
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump defrosts Electrical Prop Voltage Current input of	Apacity is 11.5	12kW, the po data(Averag A(-7)/W52 (88%) A 1:10:00 No	ower is ge): A2/ (5 1:1 1:1	3.823kW /W42 4%) B 0:00 No	, the COI A7/W3 (35% C 1:10:0 No	 is 3.01 36 A) 00 3 	kW/kW (12/W3 (15%) D 1:10:00 No	0	A(-10)/ W55.3 (100%) E 1:10:00 No	A(-7)/ W5. (88%) F 1:10:00 No
conditions, the c 2.Tested data General test conditions/ Part-Load Data collection period The heat pump	Apacity is 11.5	229.4	ower is ge): A2/ (5 1:1 1:1 7	3.823kW W42 4%) B 0:00 No 30.4	, the COI A7/W3 (35% C 1:10:0 No 230.3	 is 3.01 36 A) 00 3 	kW/kW (12/W3 (15%) D 1:10:00 No 230.3	0	A(-10)/ W55.3 (100%) E 1:10:00 No 229.3	A(-7)/ W5 (88%) F 1:10:00 No 229.4

www.tuvsud.com

Test conditions	s User Side						
Water flow	m³/h	1.22	1.22	1.22	1.22	1.22	1.22
Inlet Water temperature	°C	45.38	37.89	33.40**	28.82**	48.43	45.38
Outlet Water temperature	°C	52.05	42.01	37.54**	33.70**	54.97*	52.05
Test conditions	s Source Sid	le					
Barometric pressure	kPa	99.85	99.85	99.85	99.80	99.75	99.85
Air inlet temperature, DB	°C	-6.92	2.16	6.99	12.00	-9.97	-6.92
Air inlet temperature, WB	°C	-8.00	1.07	6.01	10.98	-11.03	-8.00
Summary of th	e results						
Total heating capacity	kW	9.510	5.894	5.924	6.984	9.329	9.510
Effective power input	kW	4.082	1.587	1.222	1.078	4.455	4.082
Coefficient of performance (COP)	kW/kW	2.33	3.71	4.85	6.48	2.09	2.33

inlet and outlet temperatures are been determined according to Cl.11.5.1 of EN 14825:2022.

Electric power consumptions	Unit	Value
Thermostat-off mode [P _{TO}]	kW	0.023
Standby mode [P _{SB}]	kW	0.008
Crankcase heater [P _{CK}]	kW	0.040
Off mode [P _{OFF}]	kW	0.008

3.Calculation/conclusion for SCOP:							
Tdesignh(°C):	-10		Tbiv(°C) :	-7			
Pdesignh(kW):	10.750		TOL(°C) :	-10			
Test result A,	B, C, D, E, F	conditions	5:				
Condition	Part load	Measured capacity	Measured COP	Cdh	CR	COP at part load	
E	10.750	9.329	2.09	0.90	1.00	2.09	
F	9.510	9.510	2.33	0.90	1.00	2.33	
А	9.510	9.510	2.33	0.90	1.00	2.33	
В	5.788	5.894	3.71	0.90	0.98	3.71	
С	3.721	5.924	4.85	0.90	0.63	4.58	
D	1.654	6.984	6.48	0.90	0.24	4.90	

Conclusions:	Unit	Value
SCOPon:	kWh/kWh	3.67
SCOP:	kWh/kWh	3.66
Q _H :	kWh/year	22209
Q _{HE} :	kWh/year	6064
$\eta_{s,h}$	%	143.5
Seasonal space heating energy efficiency classes: (According (EU) No 811/2013 Table 1)		A++

TÜV®

Table 7a.	Sound power level	Р						
Model	Pro10i	Pro10i						
	Product type :			Air to Water				
	Outdoor heat exchar	nger, Air temperature D	B/WB (°C):	7.0 / 6.0				
	Indoor heat exchang	er, Water inlet/outlet te	emperature (°C):	30.0 / 35.0				
	Voltage (V):			230				
	Frequency (Hz):			50				
	Working condition cl	ass :		Class A				
	Acoustical environme	ent :		Hemi-anechoic room				
	Windshield type :							
	Measured position a	Measured position amount :						
Mea	sured quantity	L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark				
Sound pres	ssure level `L _{p(ST)} ****		48					
Measureme	ent distance d *		1.0m					
Sound pow	ver level L _{wA} ****							
Duct conne			**) 3 decimal places; ****) nea	rest integer				

Table 7b.	Sound power level	Р		
Model	Pro10i			
	Product type :			Air to Water
	Outdoor heat exchar	nger, Air temperature D	B/WB (°C):	7.0 / 6.0
	Indoor heat exchang	er, Water inlet/outlet te	emperature (°C):	47.0 / 55.0
	Voltage (V):			230
	Frequency (Hz):			50
	Working condition cl	ass :		Class A
	Acoustical environm	ent :		Hemi-anechoic room
	Windshield type :			Sponge
	Measured position a	mount :		14
Mea	sured quantity	L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark
Sound pres	ssure level `L _{p(ST)} ****		50	
Measureme	ent distance d *		1.0m	
Sound pow	er level L _{wA} ****			
Duct conne			**) 3 decimal places; ****) neare	est integer

Table 8a.	Sound power level	Р				
Model	Pro15i					
	Product type :			Air to Water		
	Outdoor heat exchar	nger, Air temperature D	B/WB (°C):	7.0 / 6.0		
	Indoor heat exchang	er, Water inlet/outlet te	emperature (°C):	30.0 / 35.0		
	Voltage (V):			230		
	Frequency (Hz):			50		
	Working condition cl	ass :		Class A		
	Acoustical environme	ent :		Hemi-anechoic room		
	Windshield type :			Sponge		
	Measured position a	Measured position amount :				
Mea	sured quantity	L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark		
Sound pres	sure level `L _{p(ST)} ****		52			
Measureme	Measurement distance d * 1.0m					
Sound pow	er level L _{wA} ****					
Duct conne			**) 3 decimal places; ****) nea	rest integer		

Table 8b.	Sound power level	Р		
Model	Pro15i			
	Product type :			Air to Water
	Outdoor heat exchar	nger, Air temperature D	B/WB (°C):	7.0 / 6.0
	Indoor heat exchang	er, Water inlet/outlet te	mperature (°C):	47.0 / 55.0
	Voltage (V):			230
	Frequency (Hz):			50
	Working condition cl	ass :		Class A
	Acoustical environm	ent :		Hemi-anechoic room
	Windshield type :			Sponge
	Measured position a	mount :	14	
Mea	sured quantity	L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark
Sound pres	ssure level `L _{p(ST)} ****		46	
Measureme	ent distance d *		1.0m	
Sound pow	ver level L _{wA} ****			
Duct conne			**) 3 decimal places; ****) neare	est integer

Table 9a.	Sound power level	measurement (Low t	emperature application)	Р	
Model	Pro20i				
	Product type :			Air to Water	
	Outdoor heat exchanger, Air temperature DB/WB (°C):			7.0 / 6.0	
	Indoor heat exchanger, Water inlet/outlet temperature (°C):			30.0 / 35.0	
	Voltage (V):			230	
	Frequency (Hz):			50	
	Working condition class :			Class A	
	Acoustical environment :			Hemi-anechoic room	
	Windshield type :			Sponge	
	Measured position amount :			14	
Measured quantity		L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark	
Sound pressure level `L _{p(ST)} ****			50		
Measurement distance d *			1.0m		
Sound power level L _{wA} ****			65		
Duct conne			**) 3 decimal places; ****) nea	rest integer	

Table 9b.	Sound power level	measurement (Mediu	m temperature application)	Р	
Model	Pro20i				
	Product type :			Air to Water	
	Outdoor heat exchanger, Air temperature DB/WB (°C):			7.0 / 6.0	
	Indoor heat exchanger, Water inlet/outlet temperature (°C):			47.0 / 55.0	
	Voltage (V):	Voltage (V):			
	Frequency (Hz):			50	
	Working condition class :			Class A	
	Acoustical environment :			Hemi-anechoic room	
	Windshield type :			Sponge	
	Measured position amount :			14	
Measured quantity		L _{WA,indoors} (dB(A))	L _{WA,outdoors} (dB(A))	Remark	
Sound pressure level `L _{p(ST)} ****			50		
Measureme	ent distance d *		1.0m		
Sound power level L _{wA} ****			65		
Duct conne			**) 3 decimal places; ****) neare	est integer	

Table 10.	Clause 4 of EN 14511-4:2022	Р
Model:	Pro10i	
TEST 1 STARTING TEST (§4.2.1.2 Table 3)		
Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e.		

Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.03°C, T in water = 10.51°C, Flow rate 0.52m³/h have been set and obtained. At those conditions, the machine was switched on.

Observation/ Evaluation: It started without any problem and worked for 30 minutes without showing any warning or alarm. During the test the machine operated in auto mode. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 2 OPERATING TEST (§4.2.1.2 Table 3)

Requirement: From the machine "lower" starting conditions - i.e. - the machine was brought to the lower operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.01°C, T in water = 70.02 °C, Flow rate 0.52m³/h. Once these conditions were obtained, the machine was let operate for over 1 hour in auto mode.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 3 SHUTTING OFF WATER FLOW (§ 4.5)

Requirement: The water flow rate was shuted off through manual and automatic valves of the test rig. The machine switched off and only the flow switch Protection appeared on the user interface of indoor unit.

Observation/ Evaluation: Perform error reset operation, once the water flow rate was restored, the machine restarted automatically and worked for 30 minutes normally. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 4 SHUTTING OFF AIR FLOW (§ 4.5)

Requirement: The air flow rate was shutted off through a plastic sheet and a panel. The machine never turned off. It continued to operate with continuous frosting and defrosting cycles. After more than half an hour, the air flow rate was restored and the machine started to operate normally.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 5 COMPLETE POWER SUPPLY FAILURE (§ 4.6)

Requirement: The power supply was cut off for about 5 seconds.

Observation/ Evaluation: The unit restarted automatically within about 3 minutes after the power supply was reactivated.

Test Response: Pass

www.tuvsud.com

Pro15i		
TEST 1 STARTING TEST (§4.2.1.2 Table 3)		

Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.08°C, T in water = 10.04°C, Flow rate 0.60m³/h have been set and obtained. At those conditions, the machine was switched on.

Observation/ Evaluation: It started without any problem and worked for 30 minutes without showing any warning or alarm. During the test the machine operated in auto mode. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 2 OPERATING TEST (§4.2.1.2 Table 3)

Requirement: From the machine "lower" starting conditions - i.e. - the machine was brought to the lower operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.10°C, T in water = 70.89 °C, Flow rate 0.61m³/h. Once these conditions were obtained, the machine was let operate for over 1 hour in auto mode.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 3 SHUTTING OFF WATER FLOW (§ 4.5)

Requirement: The water flow rate was shuted off through manual and automatic valves of the test rig. The machine switched off and only the flow switch Protection appeared on the user interface of indoor unit.

Observation/ Evaluation: Perform error reset operation, once the water flow rate was restored, the machine restarted automatically and worked for 30 minutes normally. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 4 SHUTTING OFF AIR FLOW (§ 4.5)

Requirement: The air flow rate was shutted off through a plastic sheet and a panel. The machine never turned off. It continued to operate with continuous frosting and defrosting cycles. After more than half an hour, the air flow rate was restored and the machine started to operate normally.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 5 COMPLETE POWER SUPPLY FAILURE (§ 4.6)

Requirement: The power supply was cut off for about 5 seconds.

Observation/ Evaluation: The unit restarted automatically within about 3 minutes after the power supply was reactivated.

Test Response: Pass

www.tuvsud.com

Table 12.	Clause 4 of EN 14511-4:2022	Р
Model:	Pro20i	
TEST 1 STARTING TEST (§4.2.1.2 Table 3)		
Poquirament: The "lower" starting operating conditions declared by the manufacturer for the besting model is a		

Requirement: The "lower" starting operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -25.02°C, T in water = 9.85°C, Flow rate 1.07m³/h have been set and obtained. At those conditions, the machine was switched on.

Observation/ Evaluation: It started without any problem and worked for 30 minutes without showing any warning or alarm. During the test the machine operated in auto mode. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 2 OPERATING TEST (§4.2.1.2 Table 3)

Requirement: From the machine "lower" starting conditions - i.e. - the machine was brought to the lower operating conditions declared by the manufacturer for the heating mode- i.e. Tair= -24.89°C, T in water = 70.45 °C, Flow rate 1.07m³/h. Once these conditions were obtained, the machine was let operate for over 1 hour in auto mode.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 3 SHUTTING OFF WATER FLOW (§ 4.5)

Requirement: The water flow rate was shuted off through manual and automatic valves of the test rig. The machine switched off and only the flow switch Protection appeared on the user interface of indoor unit.

Observation/ Evaluation: Perform error reset operation, once the water flow rate was restored, the machine restarted automatically and worked for 30 minutes normally. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 4 SHUTTING OFF AIR FLOW (§ 4.5)

Requirement: The air flow rate was shutted off through a plastic sheet and a panel. The machine never turned off. It continued to operate with continuous frosting and defrosting cycles. After more than half an hour, the air flow rate was restored and the machine started to operate normally.

Observation/ Evaluation: During the test, no waring or alarm were showed. No damage was recorded on the machine during and after the test.

Test Response: Pass

TEST 5 COMPLETE POWER SUPPLY FAILURE (§ 4.6)

Requirement: The power supply was cut off for about 5 seconds.

Observation/ Evaluation: The unit restarted automatically within about 3 minutes after the power supply was reactivated.

Test Response: Pass

www.tuvsud.com

Appendix II Marking plate

Nameplate

Model: <u>Pro10i</u>

DC INVERTE	ER HEAT PUMP		
Model No.	Pro10i		
*Heating Capacity Range	2.83~8.00kW		
*Heating input Range	0.65∼1.84 kW		
*Heating COP Range	3.03~5.21 kW/kW		
**Heating Capacity Range	2.53~7.19 kW		
**Heating input Range	0.89∼2.54 kW		
**Heating COP Range	2.52~4.32 kW/kW		
Power supply	220-240V~/50Hz		
Rated current	13.5 A		
Rated power input	3050 W		
Max exhaust pressure	3.1MPa		
Max suction pressure	0.9MPa		
Maximum allowable pressure	3.1MPa		
Refrigerant	R290/0.70kg		
Max water temperature	65 ℃		
Degree of protection	IPX4		
Shockproof level	I.		
Earth requirement ≤0.1Ω			
Net weight 80 kg			
Dimension	1100*460*800mm		
Water connection	1 Inch		
Noise level	≪60dB(A)		
Working ambient temperature	Working ambient temperature -25℃~43℃		
*Heating working condition: Inl	et water temperature 30°C,		
Outlet water temperature 35°C			
Dry bulb temperature 7°C, We	t bulb temperature 6°C.		
**Heating working condition: Ir	nlet water temperature 47°C,		
Outlet water temperature 55°C			
Dry bulb temperature 7°C, We	t bulb temperature 6°C.		
Proteam Europa AS	~		
Kokstaddalen 31, 5257 Koksta	ad, NORWAY		
X	CE 📐		

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 32 of 44

Appendix II Marking plate

Nameplate

Model: <u>Pro15i</u>

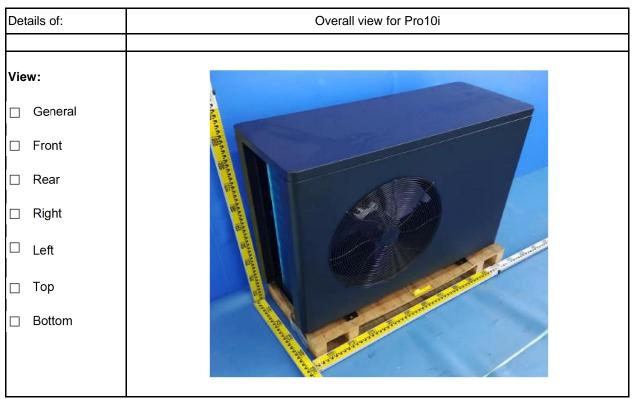
15i 5~10.38 kW 5~2.42 kW 1~5.16 kW/kW 0~9.63 kW 9~3.38 kW 0~3.42 kW/kW 0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
5~2.42 kW 1~5.16 kW/kW 0~9.63 kW 9~3.38 kW 0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
1~5.16 kW/kW 0~9.63 kW 9~3.38 kW 0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
0~9.63 kW 9~3.38 kW 0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
9~3.38 kW 0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
0~3.42 kW/kW 0-240V~/50Hz 2 A 30 W	
0-240V~/50Hz 2 A 30 W	
2 A 30 W	
30 W	
MPa	
MPa	
MPa	
90/1.10kg	
С	
(4	
).1Ω	
kg	
)0*460*800mm	
nch	
0dB(A)	
Working ambient temperature -25℃~43℃	
ater temperature 30°C,	
b temperature 6°C.	
water temperature 47°C,	
mater temperature 47 C,	
Mater temperature 47 C,	
b temperature 6°C.	

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 33 of 44

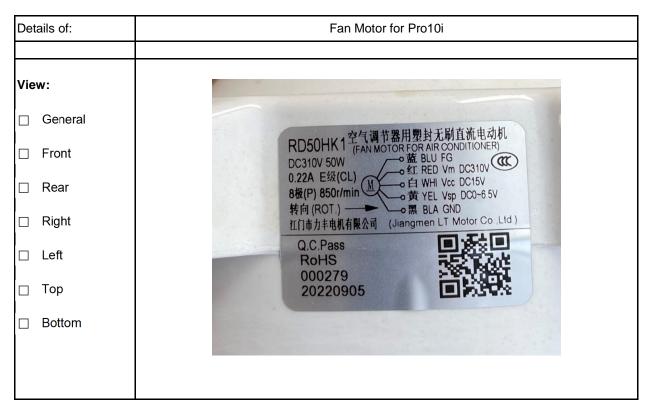
Appendix II Marking plate

Nameplate

Model: <u>Pro20i</u>

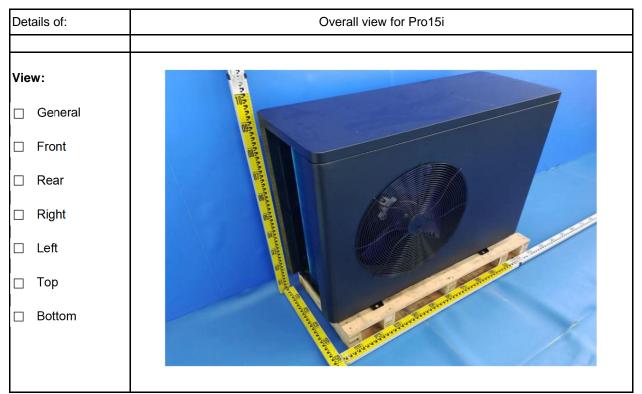

DC INVERTE	ER HEAT PUMP
Model No.	Pro20i
*Heating Capacity Range	5.10~14.50 kW
*Heating input Range	1.21~3.44 kW
*Heating COP Range	3.03~5.10 kW/kW
**Heating Capacity Range	4.88~13.85 kW
**Heating input Range	1.68~4.78 kW
**Heating COP Range	2.03~3.48 kW/kW
Power supply	220-240V~/50Hz
Rated current	26.5A
Rated power input	6030 W
Max exhaust pressure	3.1MPa
Max suction pressure	0.9MPa
Maximum allowable pressure	3.1MPa
Refrigerant	R290/1.20kg
Max water temperature	65 ℃
Degree of protection	IPX4
Shockproof level	
Earth requirement ≤0.1Ω	
Net weight 99 kg	
Dimension	1110*470*1010mm
Water connection	1 Inch
Noise level	≪67dB(A)
Working ambient temperature	-25℃~43℃
*Heating working condition: Inl	
Outlet water temperature 35°C	
Dry bulb temperature 7°C, We	
**Heating working condition: Ir	•
Outlet water temperature 55°C	
Dry bulb temperature 7°C, We	
Proteam Europa AS	
Kokstaddalen 31, 5257 Koksta	ad, NORWAY
X	CE 📐

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 34 of 44



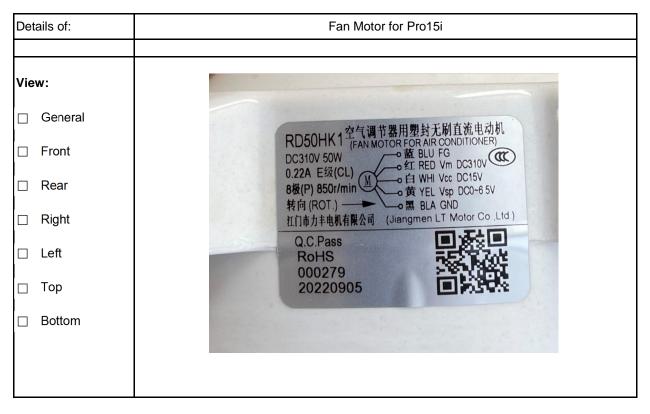
Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 35 of 44 www.tuvsud.com

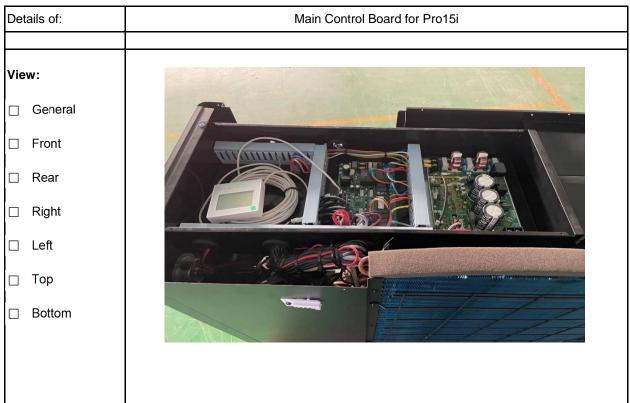
Details of:	Main Control Board for Pro10i
View:	
General	
□ Front	
🗆 Rear	
□ Right	
□ Left	
🗆 Тор	
□ Bottom	
	and the second of the second o

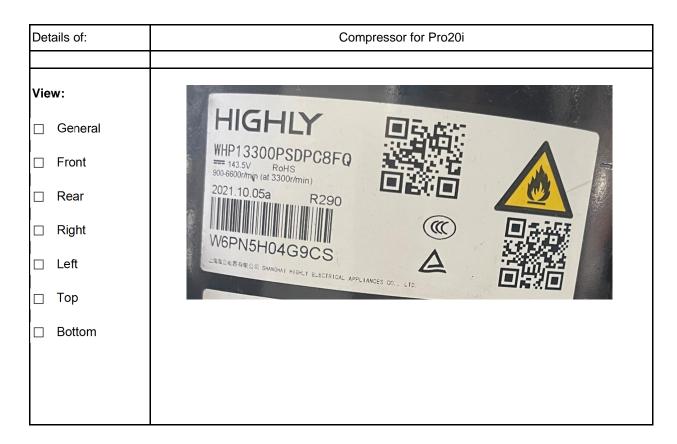

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 36 of 44

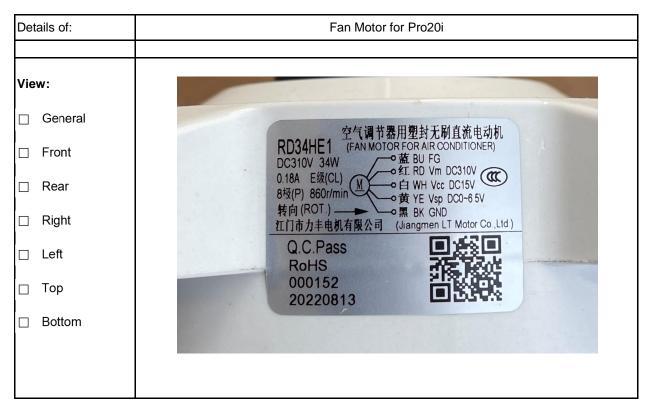
ß

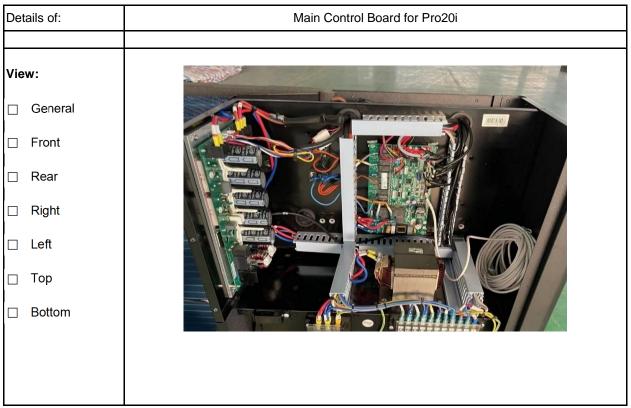
TÜV




Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 37 of 44


Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 38 of 44


Details of:	Overall view for Pro20i
View:	
General	
□ Front	
□ Rear	
□ Right	
□ Left	
🗆 Тор	
□ Bottom	A Constant of the second secon



Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 39 of 44 www.tuvsud.com

Project No: 64.181.24.00324.01 Rev.: 00 Date: 2024-03-27 Page: 40 of 44

Appendix IV Construction data form

Model: <u>Pro10i</u>		
Part		Technical data
1. Compressor		
	Manufacture:	SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
	Туре:	WHP07600PSDPC9KQ
	Rated capacity:	7475W
	Serial-number:	W5WN5H066UXD
	Specification:	DC143.5V; R290
2. Condenser		
	Manufacture:	SWEP TECHNOLOGY (SUZHOU) CO., LTD
	Туре:	B85H×20/1P-NSC-M
	Heat exchanger:	Plate heat exchanger
	Dimension(mm):	526×40.8×119
3. Evaporator		
	Manufacture:	Foshan Huize Heat Exchange Equipment Co., Ltd.
	Туре:	Hydrophilic aluminum
	Heat exchanger:	Finned-coil heat exchanger
	Dimension(mm):	318*715*750
4. Fan motor		
	Manufacture:	Jiangmen LT Motor Co., LTD
	Туре:	RD50HK1
	Fan type:	3 blade
	Specification:	DC310V; 50W
5. Main control board		
	Manufacture:	SHENZHEN MEGMEET ELECTRICAL CO., LTD.
	Туре:	HiPlus2000M-GTR32
	Specification:	220-240V~; 50Hz

www.tuvsud.com

Appendix IV Construction data form

Model: <u>Pro15i</u>		
Part		Technical data
1. Compressor		
	Manufacture:	SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
	Туре:	WHP10200PSDPC9KQ
	Rated capacity:	10200W
	Serial-number:	20211H0001333
	Specification:	DC143.5V; R290
2. Condenser		
	Manufacture:	SWEP TECHNOLOGY (SUZHOU) CO., LTD
	Туре:	B85H×20/1P-NSC-M
	Heat exchanger:	Plate heat exchanger
	Dimension(mm):	526×40.8×119
3. Evaporator		
	Manufacture:	Foshan Huize Heat Exchange Equipment Co., Ltd.
	Туре:	Hydrophilic aluminum
	Heat exchanger:	Finned-coil heat exchanger
	Dimension(mm):	318*715*750
4. Fan motor		
	Manufacture:	Jiangmen LT Motor Co., LTD
	Туре:	RD50HK1
	Fan type:	3 blade
	Specification:	DC310V; 50W
5. Main control board		
	Manufacture:	SHENZHEN MEGMEET ELECTRICAL CO., LTD.
	Туре:	HiPlus3000M-GTR32
	Specification:	220-240V~; 50Hz

www.tuvsud.com

Appendix IV Construction data form

Model: <u>Pro20i</u>						
Part		Technical data				
1. Compressor						
	Manufacture:	SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.				
	Туре:	WHP13300PSDPC8FQ				
	Rated capacity:	13300W				
	Serial-number:	W6PN5H04G9CS				
	Specification:	DC143.5V; R290				
2. Condenser						
	Manufacture:	SWEP TECHNOLOGY (SUZHOU) CO., LTD				
	Туре:	F85Hx30/1P-NSC-M				
	Heat exchanger:	Plate heat exchanger				
	Dimension(mm):	526×40.8×119				
3. Evaporator						
	Manufacture:	Foshan Huize Heat Exchange Equipment Co., Ltd.				
	Туре:	Hydrophilic aluminum				
	Heat exchanger:	Finned-coil heat exchanger				
	Dimension(mm):	352*715*950				
4. Fan motor						
	Manufacture:	Jiangmen LT Motor Co., LTD				
	Туре:	RD34HE1				
	Fan type:	3 blade				
	Specification:	DC310V; 34W				
5. Main control board						
	Manufacture:	SHENZHEN MEGMEET ELECTRICAL CO., LTD.				
	Туре:	HiPlus5000DF4-GT35A				
	Specification:	220-240V~; 50Hz				

www.tuvsud.com

Appendix V Equipment List

No.	Туре	Manufacture	Model	Equipment ID	Calibration Due Date
1	Heat pump energy efficiency testing system	PINXIN	10HP	2017J00001	2023-11-24
2	Electromagnetic flowmeter	KROHNE	OPTIFLUX4100C	H17221264	2023-12-21
3	20 Channel noise and vibration testing system	RION	SA-02M	CQCSC-BE-0026	2024-01-11
4	Nosie Testing Lab	Beijing Zhongjia Zhirui Technology Co., LTD	ZR-02	CQCSC-BE-0026	2023-11-22
5	Nosie Testing Lab (environmental control system)	Beijing Zhongjia Zhirui Technology Co., LTD	ZR-02	CQCSC-BE-0026	2023-11-22

-- End of Report --

